Dual-functional lanthanide metal organic frameworks for visual and ultrasensitive ratiometric fluorescent detection of phosphate based on aggregation-induced energy transfer
Phosphate (Pi) not only plays a significant role in physiological processes, but also is an important indicator for aquatic ecosystems. The dual-functional lanthanide metal organic frameworks (MOFs) were synthesized for visual and ultrasensitive ratiometric fluorescent detection of Pi based on aggregation-induced energy transfer. In the MOFs material, ciprofloxacin (CIP) functions as an energy donor and results in the fluorescence enhancement of Eu3+; the introduction of pyromellitic acid can cause the aggregation of the CIP-Eu3+ complex, and red characteristic fluorescence of Eu3+ at 614 nm is further enhanced (about 40 times). When Pi is added to the MOFs solution, CIP is released from the MOFs, red fluorescence of Eu3+ is quenched and blue fluorescence of CIP is simultaneously recovered, thereby a ratiometric fluorescent probe for the detection of Pi was fabricated. The fluorescent response based on intermolecular energy transfer of the CIP-Eu3+ complex is very sensitive to Pi. The limit of detection (3 sigma/K) of the probe is ultrasensitive and attains 4.4 nM. The possible interferential substances such as 17 common metal ions and 14 anions investigated do not interfere with the Pi detection. The ratiometric fluorescent probe has been successfully used in the determination of Pi in real human urine and lake water samples. This work may supply a new strategy for fabricating ratiometric fluorescent probe and a prospective application in biological and environmental samples. (C) 2020 Elsevier B.V. All rights reserved.
机构:
Zhejiang Univ, Dept Mat Sci & Engn, Cyrus Tang Ctr Sensor Mat & Applicat, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R ChinaZhejiang Univ, Dept Mat Sci & Engn, Cyrus Tang Ctr Sensor Mat & Applicat, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
Cui, Yuanjing
Chen, Banglin
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Dept Mat Sci & Engn, Cyrus Tang Ctr Sensor Mat & Applicat, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
Univ Texas San Antonio, Dept Chem, San Antonio, TX 78249 USAZhejiang Univ, Dept Mat Sci & Engn, Cyrus Tang Ctr Sensor Mat & Applicat, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
Chen, Banglin
Qian, Guodong
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Dept Mat Sci & Engn, Cyrus Tang Ctr Sensor Mat & Applicat, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R ChinaZhejiang Univ, Dept Mat Sci & Engn, Cyrus Tang Ctr Sensor Mat & Applicat, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
机构:
Zhejiang Univ, Dept Mat Sci & Engn, Cyrus Tang Ctr Sensor Mat & Applicat, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R ChinaZhejiang Univ, Dept Mat Sci & Engn, Cyrus Tang Ctr Sensor Mat & Applicat, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
Cui, Yuanjing
Chen, Banglin
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Dept Mat Sci & Engn, Cyrus Tang Ctr Sensor Mat & Applicat, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
Univ Texas San Antonio, Dept Chem, San Antonio, TX 78249 USAZhejiang Univ, Dept Mat Sci & Engn, Cyrus Tang Ctr Sensor Mat & Applicat, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
Chen, Banglin
Qian, Guodong
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Dept Mat Sci & Engn, Cyrus Tang Ctr Sensor Mat & Applicat, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R ChinaZhejiang Univ, Dept Mat Sci & Engn, Cyrus Tang Ctr Sensor Mat & Applicat, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China