Inverted Pulse Estimation in Pulse Inversion Harmonic Imaging using Deep Learning
被引:0
作者:
Fouad, Mariam
论文数: 0引用数: 0
h-index: 0
机构:
Ruhr Univ Bochum, Chair Med Engn, Bochum, GermanyRuhr Univ Bochum, Chair Med Engn, Bochum, Germany
Fouad, Mariam
[1
]
Schmitz, Georg
论文数: 0引用数: 0
h-index: 0
机构:
Ruhr Univ Bochum, Chair Med Engn, Bochum, GermanyRuhr Univ Bochum, Chair Med Engn, Bochum, Germany
Schmitz, Georg
[1
]
机构:
[1] Ruhr Univ Bochum, Chair Med Engn, Bochum, Germany
来源:
2022 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS)
|
2022年
关键词:
deep learning;
convolutional autoencoders;
harmonic imaging;
pulse inversion;
nonlinear propagation;
D O I:
10.1109/IUS54386.2022.9958113
中图分类号:
O42 [声学];
学科分类号:
070206 ;
082403 ;
摘要:
Conventional methods such as filtering and multi-pulse acquisition techniques play an important role in ultrasonic nonlinear imaging, specifically harmonic imaging. However, the former suffers from spectral leakage, while the latter is hindered by the low frame rate and increased susceptibility to motion artifacts caused by the need to transmit two or more pulses. In this work, deep learning concepts are exploited to achieve a single-shot harmonic imaging application. This is accomplished by implementing an asymmetric convolutional autoencoder, capable of learning the nonlinear relationship between the echo resulting from the first transmitted pulse (network input) and the echo resulting from the second transmitted (inverted) pulse (network output) used in the conventional pulse inversion technique. The proposed approach yielded harmonic images with comparable contrast to noise and contrast ratios to the conventional pulse inversion technique, yet at approximately double the frame rate. These findings pave the way for harmonic imaging to be used with quality that is on par with the quality achieved by current harmonic imaging methods but with a higher framerate and fewer motion artifacts.
机构:
Korea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Daejeon 34141, South KoreaKorea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Daejeon 34141, South Korea
Yoon, Yeo Hun
;
Khan, Shujaat
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Daejeon 34141, South KoreaKorea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Daejeon 34141, South Korea
Khan, Shujaat
;
Huh, Jaeyoung
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Daejeon 34141, South KoreaKorea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Daejeon 34141, South Korea
Huh, Jaeyoung
;
Ye, Jong Chul
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Daejeon 34141, South KoreaKorea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Daejeon 34141, South Korea
机构:
Korea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Daejeon 34141, South KoreaKorea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Daejeon 34141, South Korea
Yoon, Yeo Hun
;
Khan, Shujaat
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Daejeon 34141, South KoreaKorea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Daejeon 34141, South Korea
Khan, Shujaat
;
Huh, Jaeyoung
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Daejeon 34141, South KoreaKorea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Daejeon 34141, South Korea
Huh, Jaeyoung
;
Ye, Jong Chul
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Daejeon 34141, South KoreaKorea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Daejeon 34141, South Korea