Asymmetric Adaptation of Deep Features for Cross-Domain Classification in Remote Sensing Imagery

被引:45
作者
Ammour, Nassim [1 ]
Bashmal, Laila [1 ]
Bazi, Yakoub [1 ]
Al Rahhal, M. M. [2 ]
Zuair, Mansour [1 ]
机构
[1] King Saud Univ, Comp Engn Dept, Coll Comp & Informat Sci, Riyadh 11543, Saudi Arabia
[2] King Saud Univ, Informat Sci Dept, Coll Comp & Informat Sci MZ, Riyadh 11543, Saudi Arabia
关键词
Asymmetric adaptation neural network (AANN); cross-domain classification; deep features; SCENE CLASSIFICATION;
D O I
10.1109/LGRS.2018.2800642
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this letter, we introduce an asymmetric adaptation neural network (AANN) method for cross-domain classification in remote sensing images. Before the adaptation process, we feed the features obtained from a pretrained convolutional neural network to a denoising autoencoder (DAE) to perform dimensionality reduction. Then the first hidden layer of AANN (placed on the top of DAE) maps the labeled source data to the target space, while the subsequent layers control the separation between the available land-cover classes. To learn its weights, the network minimizes an objective function composed of two losses related to the distance between the source and target data distributions and class separation. The results of experiments conducted on six scenarios built from three benchmark scene remote sensing data sets (i.e., Merced, KSA, and AID data sets) are reported and discussed.
引用
收藏
页码:597 / 601
页数:5
相关论文
共 14 条
[1]   Deep learning approach for active classification of electrocardiogram signals [J].
Al Rahhal, M. M. ;
Bazi, Yakoub ;
AlHichri, Haikel ;
Alajlan, Naif ;
Melgani, Farid ;
Yager, R. R. .
INFORMATION SCIENCES, 2016, 345 :340-354
[2]   Deep Feature Fusion for VHR Remote Sensing Scene Classification [J].
Chaib, Souleyman ;
Liu, Huan ;
Gu, Yanfeng ;
Yao, Hongxun .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (08) :4775-4784
[3]   Fast Binary Coding for the Scene Classification of High-Resolution Remote Sensing Imagery [J].
Hu, Fan ;
Xia, Gui-Song ;
Hu, Jingwen ;
Zhong, Yanfei ;
Xu, Kan .
REMOTE SENSING, 2016, 8 (07)
[4]   Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery [J].
Hu, Fan ;
Xia, Gui-Song ;
Hu, Jingwen ;
Zhang, Liangpei .
REMOTE SENSING, 2015, 7 (11) :14680-14707
[5]   Domain Adaptation Network for Cross-Scene Classification [J].
Othman, Esam ;
Bazi, Yakoub ;
Melgani, Farid ;
Alhichri, Haikel ;
Alajlan, Naif ;
Zuair, Mansour .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (08) :4441-4456
[6]   Using convolutional features and a sparse autoencoder for land-use scene classification [J].
Othmana, Esam ;
Bazi, Yakoub ;
Alajlan, Naif ;
Alhichri, Haikel ;
Melgani, Farid .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2016, 37 (10) :2149-2167
[7]  
Sun BC, 2016, AAAI CONF ARTIF INTE, P2058
[8]   Adversarial Discriminative Domain Adaptation [J].
Tzeng, Eric ;
Hoffman, Judy ;
Saenko, Kate ;
Darrell, Trevor .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2962-2971
[9]   MatConvNet Convolutional Neural Networks for MATLAB [J].
Vedaldi, Andrea ;
Lenc, Karel .
MM'15: PROCEEDINGS OF THE 2015 ACM MULTIMEDIA CONFERENCE, 2015, :689-692
[10]   Aggregating Rich Hierarchical Features for Scene Classification in Remote Sensing Imagery [J].
Wang, Guoli ;
Fan, Bin ;
Xiang, Shiming ;
Pan, Chunhong .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (09) :4104-4115