Bayesian Approach in Nonparametric Count Regression with Binomial Kernel

被引:6
作者
Zougab, Nabil [1 ]
Adjabi, Smail [1 ]
Kokonendji, Celestin C. [2 ]
机构
[1] Univ Bejaia, Lab LAMOS, Bejaia 06000, Algeria
[2] Univ Franche Comte, LMB UMR CNRS 6623, F-25030 Besancon, France
关键词
Bandwidth; Count function; Cross-validation; Kernel; MCMC; DISCRETE TRIANGULAR DISTRIBUTIONS; BANDWIDTH SELECTION;
D O I
10.1080/03610918.2012.725145
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Recently, Kokonendji etal. have adapted the well-known Nadaraya-Watson kernel estimator for estimating the count function m in the context of nonparametric discrete regression. The authors have also investigated the bandwidth selection using the cross-validation method. In this article, we propose a Bayesian approach in the context of nonparametric count regression for estimating the bandwidth and the variance of the model error, which has not been estimated in Kokonendji etal. The model error is considered as Gaussian with mean of zero and a variance of sigma(2). The Bayes estimates cannot be obtained in closed form and then, we use the well-known Markov chain Monte Carlo (MCMC) technique to compute the Bayes estimates under the squared errors loss function. The performance of this proposed approach and the cross-validation method are compared through simulation and real count data.
引用
收藏
页码:1052 / 1063
页数:12
相关论文
共 50 条
[41]   Bayesian estimation and case influence diagnostics for the zero-inflated negative binomial regression model [J].
Garay, Aldo M. ;
Lachos, Victor H. ;
Bolfarine, Heleno .
JOURNAL OF APPLIED STATISTICS, 2015, 42 (06) :1148-1165
[42]   An oracle property of the Nadaraya-Watson kernel estimator for high-dimensional nonparametric regression [J].
Conn, Daniel ;
Li, Gang .
SCANDINAVIAN JOURNAL OF STATISTICS, 2019, 46 (03) :735-764
[43]   ESTIMATION OF CHANGE-POINTS IN A NONPARAMETRIC REGRESSION FUNCTION THROUGH KERNEL DENSITY-ESTIMATION [J].
CHU, CK .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1994, 23 (11) :3037-3062
[44]   A Bayesian procedure for bandwidth selection in circular kernel density estimation [J].
Bedouhene, Kahina ;
Zougab, Nabil .
MONTE CARLO METHODS AND APPLICATIONS, 2020, 26 (01) :69-82
[45]   Bandwidth selection for a class of difference-based variance estimators in the nonparametric regression: A possible approach [J].
Levine, A. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (12) :3405-3431
[46]   Nonparametric inference for interval data using kernel methods [J].
Park, Hoyoung ;
Loh, Ji Meng ;
Jang, Woncheol .
JOURNAL OF NONPARAMETRIC STATISTICS, 2023, 35 (03) :455-473
[47]   A hierarchical nonparametric Bayesian approach for medical images and gene expressions classification [J].
Elguebaly, Tarek ;
Bouguila, Nizar .
SOFT COMPUTING, 2015, 19 (01) :189-204
[48]   A hierarchical nonparametric Bayesian approach for medical images and gene expressions classification [J].
Tarek Elguebaly ;
Nizar Bouguila .
Soft Computing, 2015, 19 :189-204
[49]   Estimation of inefficiency in stochastic frontier models: a Bayesian kernel approach [J].
Feng, Guohua ;
Wang, Chuan ;
Zhang, Xibin .
JOURNAL OF PRODUCTIVITY ANALYSIS, 2019, 51 (01) :1-19
[50]   A Bayesian approach to bandwidth selection for multivariate kernel density estimation [J].
Zhang, Xibin ;
King, Maxwell L. ;
Hyndman, Rob J. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (11) :3009-3031