Bayesian Approach in Nonparametric Count Regression with Binomial Kernel

被引:6
作者
Zougab, Nabil [1 ]
Adjabi, Smail [1 ]
Kokonendji, Celestin C. [2 ]
机构
[1] Univ Bejaia, Lab LAMOS, Bejaia 06000, Algeria
[2] Univ Franche Comte, LMB UMR CNRS 6623, F-25030 Besancon, France
关键词
Bandwidth; Count function; Cross-validation; Kernel; MCMC; DISCRETE TRIANGULAR DISTRIBUTIONS; BANDWIDTH SELECTION;
D O I
10.1080/03610918.2012.725145
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Recently, Kokonendji etal. have adapted the well-known Nadaraya-Watson kernel estimator for estimating the count function m in the context of nonparametric discrete regression. The authors have also investigated the bandwidth selection using the cross-validation method. In this article, we propose a Bayesian approach in the context of nonparametric count regression for estimating the bandwidth and the variance of the model error, which has not been estimated in Kokonendji etal. The model error is considered as Gaussian with mean of zero and a variance of sigma(2). The Bayes estimates cannot be obtained in closed form and then, we use the well-known Markov chain Monte Carlo (MCMC) technique to compute the Bayes estimates under the squared errors loss function. The performance of this proposed approach and the cross-validation method are compared through simulation and real count data.
引用
收藏
页码:1052 / 1063
页数:12
相关论文
共 50 条
[31]   A nonparametric regression approach to syringe grading for quality improvement [J].
Nychka, D ;
Gray, G ;
Haaland, P ;
Martin, D ;
OConnell, M .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (432) :1171-1178
[32]   Modelling rice productivity: Additive nonparametric regression approach [J].
Chandran, KP ;
Prajneshu .
NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2004, 27 (7-8) :261-267
[33]   A KERNEL REGRESSION MODEL FOR PANEL COUNT DATA WITH TIME-VARYING COEFFICIENTS [J].
Wang, Yang ;
Yu, Zhangsheng .
STATISTICA SINICA, 2021, 31 (04) :1707-1725
[34]   AN EFFICIENT CROSS-VALIDATION ALGORITHM FOR WINDOW WIDTH SELECTION FOR NONPARAMETRIC KERNEL REGRESSION [J].
RACINE, J .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1993, 22 (04) :1107-1114
[35]   Quantile Regression Neural Networks: A Bayesian Approach [J].
Jantre, S. R. ;
Bhattacharya, S. ;
Maiti, T. .
JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2021, 15 (03)
[36]   Quantile Regression Neural Networks: A Bayesian Approach [J].
S. R. Jantre ;
S. Bhattacharya ;
T. Maiti .
Journal of Statistical Theory and Practice, 2021, 15
[37]   On combining independent nonparametric regression estimators [J].
Gerard, PD ;
Schucany, WR .
STATISTICS & PROBABILITY LETTERS, 1996, 26 (01) :25-34
[38]   Nonparametric multiplicative bias correction for von Mises kernel circular density estimator [J].
Bedouhene, Kahina ;
Zougab, Nabil .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (03) :774-792
[39]   Spatial variation in risk of disease: a nonparametric binary regression approach [J].
Kelsall, JE ;
Diggle, PJ .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1998, 47 :559-573
[40]   Bayesian nonparametric estimation of bandwidth using mixtures of kernel estimators for length-biased data [J].
Rahnamay Kordasiabi, S. ;
Khazaei, S. .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (10) :1849-1874