Bayesian Approach in Nonparametric Count Regression with Binomial Kernel

被引:6
作者
Zougab, Nabil [1 ]
Adjabi, Smail [1 ]
Kokonendji, Celestin C. [2 ]
机构
[1] Univ Bejaia, Lab LAMOS, Bejaia 06000, Algeria
[2] Univ Franche Comte, LMB UMR CNRS 6623, F-25030 Besancon, France
关键词
Bandwidth; Count function; Cross-validation; Kernel; MCMC; DISCRETE TRIANGULAR DISTRIBUTIONS; BANDWIDTH SELECTION;
D O I
10.1080/03610918.2012.725145
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Recently, Kokonendji etal. have adapted the well-known Nadaraya-Watson kernel estimator for estimating the count function m in the context of nonparametric discrete regression. The authors have also investigated the bandwidth selection using the cross-validation method. In this article, we propose a Bayesian approach in the context of nonparametric count regression for estimating the bandwidth and the variance of the model error, which has not been estimated in Kokonendji etal. The model error is considered as Gaussian with mean of zero and a variance of sigma(2). The Bayes estimates cannot be obtained in closed form and then, we use the well-known Markov chain Monte Carlo (MCMC) technique to compute the Bayes estimates under the squared errors loss function. The performance of this proposed approach and the cross-validation method are compared through simulation and real count data.
引用
收藏
页码:1052 / 1063
页数:12
相关论文
共 50 条
[11]   Nonparametric kernel regression subject to monotonicity constraints [J].
Hall, P ;
Huang, LS .
ANNALS OF STATISTICS, 2001, 29 (03) :624-647
[12]   Methodology for nonparametric bias reduction in kernel regression estimation [J].
Slaoui, Yousri .
MONTE CARLO METHODS AND APPLICATIONS, 2023, 29 (01) :55-77
[13]   On kernel nonparametric regression designed for complex survey data [J].
Torsten Harms ;
Pierre Duchesne .
Metrika, 2010, 72 :111-138
[14]   On kernel nonparametric regression designed for complex survey data [J].
Harms, Torsten ;
Duchesne, Pierre .
METRIKA, 2010, 72 (01) :111-138
[15]   Nonparametric Density Estimation Using Copula Transform, Bayesian Sequential Partitioning, and Diffusion-Based Kernel Estimator [J].
Majdara, Aref ;
Nooshabadi, Saeid .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2020, 32 (04) :821-826
[16]   APPROPRIATE KERNEL REGRESSION ON A COUNT EXPLANATORY VARIABLE AND APPLICATIONS [J].
Kokonendji, Celestin C. ;
Kiesse, Tristan Senga ;
Demetrio, Clarice G. B. .
ADVANCES AND APPLICATIONS IN STATISTICS, 2009, 12 (01) :99-125
[17]   BAYESIAN RESIDUAL ANALYSIS FOR BETA-BINOMIAL REGRESSION MODELS [J].
Pires, Rubiane Maria ;
Ribeiro Diniz, Carlos Alberto .
XI BRAZILIAN MEETING ON BAYESIAN STATISTICS (EBEB 2012), 2012, 1490 :259-267
[18]   Using bimodal kernel for inference in nonparametric regression with correlated errors [J].
Kim, Tae Yoon ;
Park, Byeong U. ;
Moon, Myung Sang ;
Kim, Chiho .
JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (07) :1487-1497
[19]   Adaptive smoothing in associated kernel discrete functions estimation using Bayesian approach [J].
Zougab, N. ;
Adjabi, S. ;
Kokonendji, C. C. .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2013, 83 (12) :2219-2231
[20]   Adaptive Bayesian Nonparametric Regression via Stationary Smoothness Priors [J].
Tobias, Justin L. .
MATHEMATICS, 2025, 13 (07)