We study the problem of inferring time-varying Gaussian Markov random fields, where the underlying graphical model is both sparse and changes sparsely over time. Most of the existing methods for the inference of time-varying Markov random fields (MRFs) rely on the regularized maximum likelihood estimation (MLE), that typically suffer from weak statistical guarantees and high computational time. Instead, we introduce a new class of constrained optimization problems for the inference of sparsely-changing Gaussian MRFs (GMRFs). The proposed optimization problem is formulated based on the exact l(0) regularization, and can be solved in near-linear time and memory. Moreover, we show that the proposed estimator enjoys a provably small estimation error. We derive sharp statistical guarantees in the high-dimensional regime, showing that such problems can be learned with as few as one sample per time period. Our proposed method is extremely efficient in practice: it can accurately estimate sparsely-changing GMRFs with more than 500 million variables in less than one hour.
机构:
Novartis Pharmaceut, Adv Methodol & Data Sci, E Hanover, NJ 07936 USANovartis Pharmaceut, Adv Methodol & Data Sci, E Hanover, NJ 07936 USA
Dunn, Robin
Gangrade, Aditya
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Elect Engn & Comp Sci, Ann Arbor, MI USA
Boston Univ, Dept Elect & Comp Engn, Boston, MA USANovartis Pharmaceut, Adv Methodol & Data Sci, E Hanover, NJ 07936 USA
Gangrade, Aditya
Wasserman, Larry
论文数: 0引用数: 0
h-index: 0
机构:
Carnegie Mellon Univ, Dept Stat, Pittsburgh, PA USA
Carnegie Mellon Univ, Data Sci & Machine Learning Dept, Pittsburgh, PA USANovartis Pharmaceut, Adv Methodol & Data Sci, E Hanover, NJ 07936 USA
Wasserman, Larry
Ramdas, Aaditya
论文数: 0引用数: 0
h-index: 0
机构:
Carnegie Mellon Univ, Dept Stat, Pittsburgh, PA USA
Carnegie Mellon Univ, Data Sci & Machine Learning Dept, Pittsburgh, PA USANovartis Pharmaceut, Adv Methodol & Data Sci, E Hanover, NJ 07936 USA
机构:
Amazon Com Inc, Seattle, WA 98109 USAAmazon Com Inc, Seattle, WA 98109 USA
Pan, Lanfeng
Li, Yehua
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Riverside, Dept Stat, 900 Univ Ave, Riverside, CA 92521 USAAmazon Com Inc, Seattle, WA 98109 USA
Li, Yehua
He, Kevin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Sch Publ Hlth, Ann Arbor, MI 48109 USA
Univ Michigan, Kidney Epidemiol & Cost Ctr, Ann Arbor, MI 48109 USAAmazon Com Inc, Seattle, WA 98109 USA
He, Kevin
Li, Yanming
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Sch Publ Hlth, Ann Arbor, MI 48109 USA
Univ Michigan, Kidney Epidemiol & Cost Ctr, Ann Arbor, MI 48109 USAAmazon Com Inc, Seattle, WA 98109 USA
Li, Yanming
Li, Yi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Sch Publ Hlth, Ann Arbor, MI 48109 USA
Univ Michigan, Kidney Epidemiol & Cost Ctr, Ann Arbor, MI 48109 USAAmazon Com Inc, Seattle, WA 98109 USA
机构:
Novartis Pharmaceut, Adv Methodol & Data Sci, E Hanover, NJ 07936 USANovartis Pharmaceut, Adv Methodol & Data Sci, E Hanover, NJ 07936 USA
Dunn, Robin
Gangrade, Aditya
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Elect Engn & Comp Sci, Ann Arbor, MI USA
Boston Univ, Dept Elect & Comp Engn, Boston, MA USANovartis Pharmaceut, Adv Methodol & Data Sci, E Hanover, NJ 07936 USA
Gangrade, Aditya
Wasserman, Larry
论文数: 0引用数: 0
h-index: 0
机构:
Carnegie Mellon Univ, Dept Stat, Pittsburgh, PA USA
Carnegie Mellon Univ, Data Sci & Machine Learning Dept, Pittsburgh, PA USANovartis Pharmaceut, Adv Methodol & Data Sci, E Hanover, NJ 07936 USA
Wasserman, Larry
Ramdas, Aaditya
论文数: 0引用数: 0
h-index: 0
机构:
Carnegie Mellon Univ, Dept Stat, Pittsburgh, PA USA
Carnegie Mellon Univ, Data Sci & Machine Learning Dept, Pittsburgh, PA USANovartis Pharmaceut, Adv Methodol & Data Sci, E Hanover, NJ 07936 USA
机构:
Amazon Com Inc, Seattle, WA 98109 USAAmazon Com Inc, Seattle, WA 98109 USA
Pan, Lanfeng
Li, Yehua
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Riverside, Dept Stat, 900 Univ Ave, Riverside, CA 92521 USAAmazon Com Inc, Seattle, WA 98109 USA
Li, Yehua
He, Kevin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Sch Publ Hlth, Ann Arbor, MI 48109 USA
Univ Michigan, Kidney Epidemiol & Cost Ctr, Ann Arbor, MI 48109 USAAmazon Com Inc, Seattle, WA 98109 USA
He, Kevin
Li, Yanming
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Sch Publ Hlth, Ann Arbor, MI 48109 USA
Univ Michigan, Kidney Epidemiol & Cost Ctr, Ann Arbor, MI 48109 USAAmazon Com Inc, Seattle, WA 98109 USA
Li, Yanming
Li, Yi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Sch Publ Hlth, Ann Arbor, MI 48109 USA
Univ Michigan, Kidney Epidemiol & Cost Ctr, Ann Arbor, MI 48109 USAAmazon Com Inc, Seattle, WA 98109 USA