The minimum forcing number for the torus and hypercube

被引:52
作者
Riddle, ME [1 ]
机构
[1] Carleton Coll, Dept Math, Northfield, MN 55057 USA
基金
美国国家科学基金会;
关键词
forcing number; perfect matching; torus; hypercube;
D O I
10.1016/S0012-365X(01)00228-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph with a perfect matching M. Define the forcing number of M in G to be the smallest size of a subset S subset of M that is in no other perfect matching. In this paper, we present a property of bipartite graphs G that acts as a lower bound on the forcing number of perfect matchings in G. We then apply this to the torus and the hypercube, proving that the minimum forcing number of a perfect matching on a 2m x 2n torus with m greater than or equal to n is 2n, and that the minimum forcing number on an n-dimensional hypercube is 2(n)/4 if n is even. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:283 / 292
页数:10
相关论文
共 5 条
[1]  
ALON N, COMMUNICATION
[2]   GRAPHICAL PROPERTIES OF POLYHEXES - PERFECT MATCHING VECTOR AND FORCING [J].
HARARY, F ;
KLEIN, DJ ;
ZIVKOVIC, TP .
JOURNAL OF MATHEMATICAL CHEMISTRY, 1991, 6 (03) :295-306
[3]   INNATE DEGREE OF FREEDOM OF A GRAPH [J].
KLEIN, DJ ;
RANDIC, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1987, 8 (04) :516-521
[4]   Forcing matchings on square grids [J].
Pachter, L ;
Kim, P .
DISCRETE MATHEMATICS, 1998, 190 (1-3) :287-294
[5]   HEXAGONAL SYSTEMS WITH FORCING EDGES [J].
ZHANG, FJ ;
LI, XL .
DISCRETE MATHEMATICS, 1995, 140 (1-3) :253-263