Hybrid Numerical Model of Shock Waves in Collisionless Plasma

被引:0
作者
Vshivkova, L. [1 ]
Dudnikova, G. [2 ,3 ]
Vshivkov, K. [4 ]
机构
[1] Inst Computat Math & Math Geophys SB RAS, 6 Lavrentiev Ave, Novosibirsk 630090, Russia
[2] Inst Computat Technol SB RAS, 6 Lavrentiev Ave, Novosibirsk 630090, Russia
[3] Univ Maryland, College Pk, MD 20742 USA
[4] Inst Laser Phys SB RAS, 13-3 Lavrentiev Ave, Novosibirsk 630090, Russia
来源
APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS'16) | 2016年 / 1773卷
基金
俄罗斯科学基金会;
关键词
COSMIC-RAYS; MAGNETIC AMPLIFICATION; PARTICLE-ACCELERATION; INSTABILITY;
D O I
10.1063/1.4965021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a 2D hybrid numerical plasma model of generation and structure of collisionless shock waves in plasma and ion acceleration on their front considering physical processes in supernova remnant shock precursor. In modeling a shock wave is generated by sending a supersonic flow against a reflecting wall. The consequent interaction between incoming and reflected plasma flows lead to formation of waves, the structure of which depends on a flow velocity. The hybrid approach reduces the computational expenses relative to a fully kinetic one, and on the other hand, permits to model ions with a greater accuracy than the magnetohydrodynamics (MHD) allows. Also, another important advantage of the hybrid approach is the possibility to study the important instabilities on an ion time scale, neglecting the modes associated with electrons. In the current work a new computational scheme where stability condition allows carry out computations on more wide set of computational and physical parameters is presented.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Nonlinear Dispersion of Stationary Waves in Collisionless Plasmas
    Dodin, I. Y.
    Fisch, N. J.
    PHYSICAL REVIEW LETTERS, 2011, 107 (03)
  • [32] Collisionless electrostatic shock generation using high-energy laser systems
    Sakawa, Y.
    Morita, T.
    Kuramitsu, Y.
    Takabe, H.
    ADVANCES IN PHYSICS-X, 2016, 1 (03): : 425 - 443
  • [33] Oblique shock waves in a two electron temperature superthermally magnetized plasma
    Bains, A. S.
    Panwar, A.
    Ryu, C. M.
    ASTROPHYSICS AND SPACE SCIENCE, 2015, 360 (01)
  • [34] Simulation of a collisionless planar electrostatic shock in a proton-electron plasma with a strong initial thermal pressure change
    Dieckmann, M. E.
    Sarri, G.
    Romagnani, L.
    Kourakis, I.
    Borghesi, M.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2010, 52 (02)
  • [35] PIC simulation and physical interpretation of the formation and evolution of an electrostatic shock in a collisionless plasma produced by a fs laser pulse
    Nechaev, A.
    Garasev, M.
    Kocharovsky, V.
    2016 INTERNATIONAL CONFERENCE LASER OPTICS (LO), 2016,
  • [36] On the Width of a Collisionless Shock and the Index of the Cosmic Rays It Accelerates
    Bret, Antoine
    Pe'er, Asaf
    ASTROPHYSICAL JOURNAL, 2024, 968 (02)
  • [37] Mildly relativistic collisionless shock formed by magnetic piston
    Moreno, Q.
    Araudo, A.
    Korneev, Ph.
    Li, C. K.
    Tikhonchuk, V. T.
    Ribeyre, X.
    d'Humieres, E.
    Weber, S.
    PHYSICS OF PLASMAS, 2020, 27 (12)
  • [38] Theory of the formation of a collisionless Weibel shock: pair vs. electron/proton plasmas
    Bret, A.
    Novo, A. Stockem
    Narayan, R.
    Ruyer, C.
    Dieckmann, M. E.
    Silva, L. O.
    LASER AND PARTICLE BEAMS, 2016, 34 (02) : 362 - 367
  • [39] CORRUGATION OF RELATIVISTIC MAGNETIZED SHOCK WAVES
    Lemoine, Martin
    Ramos, Oscar
    Gremillet, Laurent
    ASTROPHYSICAL JOURNAL, 2016, 827 (01)
  • [40] Interaction of a Relativistic Magnetized Collisionless Shock with a Dense Clump
    Tomita, Sara
    Ohira, Yutaka
    Kimura, Shigeo S.
    Tomida, Kengo
    Toma, Kenji
    ASTROPHYSICAL JOURNAL LETTERS, 2022, 936 (01)