Hybrid Numerical Model of Shock Waves in Collisionless Plasma

被引:0
|
作者
Vshivkova, L. [1 ]
Dudnikova, G. [2 ,3 ]
Vshivkov, K. [4 ]
机构
[1] Inst Computat Math & Math Geophys SB RAS, 6 Lavrentiev Ave, Novosibirsk 630090, Russia
[2] Inst Computat Technol SB RAS, 6 Lavrentiev Ave, Novosibirsk 630090, Russia
[3] Univ Maryland, College Pk, MD 20742 USA
[4] Inst Laser Phys SB RAS, 13-3 Lavrentiev Ave, Novosibirsk 630090, Russia
来源
APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS'16) | 2016年 / 1773卷
基金
俄罗斯科学基金会;
关键词
COSMIC-RAYS; MAGNETIC AMPLIFICATION; PARTICLE-ACCELERATION; INSTABILITY;
D O I
10.1063/1.4965021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a 2D hybrid numerical plasma model of generation and structure of collisionless shock waves in plasma and ion acceleration on their front considering physical processes in supernova remnant shock precursor. In modeling a shock wave is generated by sending a supersonic flow against a reflecting wall. The consequent interaction between incoming and reflected plasma flows lead to formation of waves, the structure of which depends on a flow velocity. The hybrid approach reduces the computational expenses relative to a fully kinetic one, and on the other hand, permits to model ions with a greater accuracy than the magnetohydrodynamics (MHD) allows. Also, another important advantage of the hybrid approach is the possibility to study the important instabilities on an ion time scale, neglecting the modes associated with electrons. In the current work a new computational scheme where stability condition allows carry out computations on more wide set of computational and physical parameters is presented.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] The microphysics of collisionless shock waves
    Marcowith, A.
    Bret, A.
    Bykov, A.
    Dieckmann, M. E.
    Drury, L. O'C
    Lembege, B.
    Lemoine, M.
    Morlino, G.
    Murphy, G.
    Pelletier, G.
    Plotnikov, I.
    Reville, B.
    Riquelme, M.
    Sironi, L.
    Novo, A. Stockem
    REPORTS ON PROGRESS IN PHYSICS, 2016, 79 (04)
  • [2] Collisionless Shock in a Relativistically Hot Unmagnetized Electron-Positron Plasma
    Kamiido, Kazuki
    Ohira, Yutaka
    ASTROPHYSICAL JOURNAL, 2024, 971 (01):
  • [3] Flux Ropes, Turbulence, and Collisionless Perpendicular Shock Waves: High Plasma Beta Case
    Zank, G. P.
    Nakanotani, M.
    Zhao, L. L.
    Du, S.
    Adhikari, L.
    Che, H.
    le Roux, J. A.
    ASTROPHYSICAL JOURNAL, 2021, 913 (02):
  • [4] Ultrarelativistic particle acceleration in collisionless shock waves
    Ohsawa, Yukiharu
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2014, 536 (04): : 147 - 254
  • [5] THE ACCELERATION OF STATIONARY CHARGED DUST GRAINS BY PROPAGATING COLLISIONLESS SHOCK WAVES
    Giacalone, J.
    Jokipii, J. R.
    ASTROPHYSICAL JOURNAL, 2009, 701 (02): : 1865 - 1871
  • [6] On the formation and properties of fluid shocks and collisionless shock waves in astrophysical plasmas
    Bret, Antoine
    Pe'er, Asaf
    JOURNAL OF PLASMA PHYSICS, 2018, 84 (03)
  • [7] The formation of a collisionless shock
    Bret, Antoine
    Stockem, Anne
    Fiuza, Frederico
    Perez Alvaro, Erica
    Ruyer, Charles
    Narayan, Ramesh
    Silva, Luis O.
    LASER AND PARTICLE BEAMS, 2013, 31 (03) : 487 - 491
  • [8] Hybrid Model of Particle Acceleration on a Shock Wave Front
    Vshivkova, Lyudmila
    Dudnikova, Galina
    NUMERICAL ANALYSIS AND ITS APPLICATIONS (NAA 2016), 2017, 10187 : 737 - 743
  • [9] Numerical simulation of turbulence and terahertz magnetosonic waves generation in collisionless plasmas
    Kumar, Narender
    Singh, Ram Kishor
    Sharma, Swati
    Uma, R.
    Sharma, R. P.
    PHYSICS OF PLASMAS, 2018, 25 (01)
  • [10] Generation of a Purely Electrostatic Collisionless Shock during the Expansion of a Dense Plasma through a Rarefied Medium
    Sarri, G.
    Dieckmann, M. E.
    Kourakis, I.
    Borghesi, M.
    PHYSICAL REVIEW LETTERS, 2011, 107 (02)