The escape rate of favorite sites of simple random walk and Brownian motion

被引:0
作者
Lifshits, MA
Shi, Z
机构
[1] St Petersburg State Univ, Fac Math & Phys, St Petersburg 198904, Russia
[2] Univ Paris 06, Probabil Lab, UMR 7599, F-75252 Paris 05, France
关键词
favorite site; local time; random walk; Brownian motion;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a simple symmetric random walk on the integer lattice Z. For each n, let V(n) denote a favorite site (or most visited site) of the random walk in the first n steps. A somewhat Surprising theorem of Bass and Griffin [Z. Wahrsch. Verw. Gebiete 70 (1985) 417-436] says that V is almost surely transient, thus disproving a previous conjecture of Erdos and Revesz [Mathematical Structures-Computational Mathematics-Mathematical Modeling 2 (1984) 152-157]. More precisely, Bass and Griffin proved that almost surely, lim inf(n-->infinity)(\V(n)\)/(1/2)(-gamma)(n)((logn)) equals 0 if gamma < 1, and infinity if gamma > 11 (eleven). The present paper studies the rate of escape of V(n). We show that almost surely, the "lim inf"' expression in question is 0 if y < 1, and is infinity otherwise. The corresponding problem for Brownian motion is also studied.
引用
收藏
页码:129 / 152
页数:24
相关论文
共 50 条
[41]   On the maximum of a simple random walk [J].
Vatutin, VA .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 1996, 40 (02) :398-402
[42]   Escape rate of the Brownian motions on hyperbolic spaces [J].
Shiozawa, Yuichi .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2017, 93 (04) :27-29
[43]   Limit Theorems for Local and Occupation Times of Random Walks and Brownian Motion on a Spider [J].
Csaki, Endre ;
Csorgo, Miklos ;
Foldes, Antonia ;
Revesz, Pal .
JOURNAL OF THEORETICAL PROBABILITY, 2019, 32 (01) :330-352
[44]   Limit Theorems for Local and Occupation Times of Random Walks and Brownian Motion on a Spider [J].
Endre Csáki ;
Miklós Csörgő ;
Antónia Földes ;
Pál Révész .
Journal of Theoretical Probability, 2019, 32 :330-352
[45]   An elementary approach to Brownian local time based on simple, symmetric random walks [J].
Szabados T. ;
Székely B. .
Periodica Mathematica Hungarica, 2005, 51 (1) :79-98
[46]   Brownian motion on stationary random manifolds [J].
Lessa, Pablo .
STOCHASTICS AND DYNAMICS, 2016, 16 (02)
[47]   Random A-permutations and Brownian motion [J].
A. L. Yakymiv .
Proceedings of the Steklov Institute of Mathematics, 2013, 282 :298-318
[48]   Patterns in Random Walks and Brownian Motion [J].
Pitman, Jim ;
Tang, Wenpin .
IN MEMORIAM MARC YOR - SEMINAIRE DE PROBABILITES XLVII, 2015, 2137 :49-88
[49]   Random scaling and sampling of Brownian motion [J].
Rosenbaum, Mathieu ;
Yor, Marc .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2015, 67 (04) :1771-1784
[50]   Algorithmically random series and Brownian motion [J].
Potgieter, Paul .
ANNALS OF PURE AND APPLIED LOGIC, 2018, 169 (11) :1210-1226