The escape rate of favorite sites of simple random walk and Brownian motion

被引:0
作者
Lifshits, MA
Shi, Z
机构
[1] St Petersburg State Univ, Fac Math & Phys, St Petersburg 198904, Russia
[2] Univ Paris 06, Probabil Lab, UMR 7599, F-75252 Paris 05, France
关键词
favorite site; local time; random walk; Brownian motion;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a simple symmetric random walk on the integer lattice Z. For each n, let V(n) denote a favorite site (or most visited site) of the random walk in the first n steps. A somewhat Surprising theorem of Bass and Griffin [Z. Wahrsch. Verw. Gebiete 70 (1985) 417-436] says that V is almost surely transient, thus disproving a previous conjecture of Erdos and Revesz [Mathematical Structures-Computational Mathematics-Mathematical Modeling 2 (1984) 152-157]. More precisely, Bass and Griffin proved that almost surely, lim inf(n-->infinity)(\V(n)\)/(1/2)(-gamma)(n)((logn)) equals 0 if gamma < 1, and infinity if gamma > 11 (eleven). The present paper studies the rate of escape of V(n). We show that almost surely, the "lim inf"' expression in question is 0 if y < 1, and is infinity otherwise. The corresponding problem for Brownian motion is also studied.
引用
收藏
页码:129 / 152
页数:24
相关论文
共 50 条
[31]   Windings of Brownian motion and random walks in the plane [J].
Shi, Z .
ANNALS OF PROBABILITY, 1998, 26 (01) :112-131
[32]   Random walks and Brownian motion on cubical complexes [J].
Nye, Tom M. W. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (04) :2185-2199
[33]   The quantile transform of simple walks and Brownian motion [J].
Assaf, Sami ;
Forman, Noah ;
Pitman, Jim .
ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 :1-39
[34]   Continuity for the Rate Function of the Simple Random Walk on Supercritical Percolation Clusters [J].
Naoki Kubota .
Journal of Theoretical Probability, 2020, 33 :1948-1973
[35]   Continuity for the Rate Function of the Simple Random Walk on Supercritical Percolation Clusters [J].
Kubota, Naoki .
JOURNAL OF THEORETICAL PROBABILITY, 2020, 33 (04) :1948-1973
[36]   Variable-linewidth light source based on Brownian motion random walk in optical phase [J].
Mochizuki, Jun ;
Inagaki, Keizo ;
Lu, Guo-Wei ;
Sakamoto, Takahide ;
Yoshida, Yuki ;
Kanno, Atsushi ;
Yamamoto, Naokatsu ;
Kawanishi, Tetsuya .
IEICE ELECTRONICS EXPRESS, 2020, 17 (16) :1-4
[37]   Brownian motion on treebolic space: escape to infinity [J].
Bendikov, Alexander ;
Saloff-Coste, Laurent ;
Salvatori, Maura ;
Woess, Wolfgang .
REVISTA MATEMATICA IBEROAMERICANA, 2015, 31 (03) :935-976
[38]   Strong approximation of fractional Brownian motion by moving averages of simple random walks [J].
Szabados, T .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2001, 92 (01) :31-60
[39]   Escape of a uniform random walk from an interval [J].
Antal, T. ;
Redner, S. .
JOURNAL OF STATISTICAL PHYSICS, 2006, 123 (06) :1129-1144
[40]   Escape of a Uniform Random Walk from an Interval [J].
T. Antal ;
S. Redner .
Journal of Statistical Physics, 2006, 123 :1129-1144