The escape rate of favorite sites of simple random walk and Brownian motion

被引:0
作者
Lifshits, MA
Shi, Z
机构
[1] St Petersburg State Univ, Fac Math & Phys, St Petersburg 198904, Russia
[2] Univ Paris 06, Probabil Lab, UMR 7599, F-75252 Paris 05, France
关键词
favorite site; local time; random walk; Brownian motion;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a simple symmetric random walk on the integer lattice Z. For each n, let V(n) denote a favorite site (or most visited site) of the random walk in the first n steps. A somewhat Surprising theorem of Bass and Griffin [Z. Wahrsch. Verw. Gebiete 70 (1985) 417-436] says that V is almost surely transient, thus disproving a previous conjecture of Erdos and Revesz [Mathematical Structures-Computational Mathematics-Mathematical Modeling 2 (1984) 152-157]. More precisely, Bass and Griffin proved that almost surely, lim inf(n-->infinity)(\V(n)\)/(1/2)(-gamma)(n)((logn)) equals 0 if gamma < 1, and infinity if gamma > 11 (eleven). The present paper studies the rate of escape of V(n). We show that almost surely, the "lim inf"' expression in question is 0 if y < 1, and is infinity otherwise. The corresponding problem for Brownian motion is also studied.
引用
收藏
页码:129 / 152
页数:24
相关论文
共 50 条
  • [21] Favourite sites of transient Brownian motion
    Hu, YY
    Shi, Z
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1998, 73 (01) : 87 - 99
  • [22] Some Remarks on the Large Deviation of the Visited Sites of Simple Random Walk in Random Scenery
    Phetpradap, Parkpoom
    [J]. THAI JOURNAL OF MATHEMATICS, 2018, : 217 - 226
  • [23] The disconnection exponent for simple random walk
    Gregory F. Lawler
    Emily E. Puckette
    [J]. Israel Journal of Mathematics, 1997, 99 : 109 - 121
  • [24] Moments of escape times of random walk
    Sengupta, A
    Goswami, A
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1999, 109 (04): : 397 - 400
  • [25] Moments of escape times of random walk
    Arindam Sengupta
    A. Goswami
    [J]. Proceedings - Mathematical Sciences, 1999, 109 : 397 - 400
  • [26] Maximum likelihood estimator for the sub-fractional Brownian motion approximated by a random walk
    Nenghui Kuang
    Huantian Xie
    [J]. Annals of the Institute of Statistical Mathematics, 2015, 67 : 75 - 91
  • [27] Maximum likelihood estimator for the sub-fractional Brownian motion approximated by a random walk
    Kuang, Nenghui
    Xie, Huantian
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2015, 67 (01) : 75 - 91
  • [28] Random walk on a building of type (A)over-tilder and Brownian motion of the Weyl chamber
    Schapira, Bruno
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (02): : 289 - 301
  • [29] On the most visited sites of planar Brownian motion
    Cammarota, Valentina
    Moerters, Peter
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2012, 17 : 1 - 9
  • [30] Windings of Brownian motion and random walks in the plane
    Shi, Z
    [J]. ANNALS OF PROBABILITY, 1998, 26 (01) : 112 - 131