Coxeter complexes and graph-associahedra

被引:112
作者
Carr, Michael
Devadoss, Satyan L. [1 ]
机构
[1] Williams Coll, Williamstown, MA 01267 USA
[2] Univ Michigan, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
coxeter complexes; graph-associahedra; minimal blow-ups;
D O I
10.1016/j.topol.2005.08.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a graph Gamma, we construct a simple, convex polytope, dubbed graph-associahedra, whose face poset is based on the connected subgraphs of Gamma. This provides a natural generalization of the Stasheff associahedron and the Bott-Taubes cyclohedron. Moreover, we show that for any simplicial Coxeter system, the minimal blow-ups of its associated Coxeter complex has a tiling by graph-associahedra. The geometric and combinatorial properties of the complex as well as of the polyhedra are given. These spaces are natural generalizations of the Deligne-Knudsen-Mumford compactification of the real moduli space of curves. (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:2155 / 2168
页数:14
相关论文
共 16 条
[1]  
ARMSTRONG S, 2004, POINT CONFIGURATIONS
[2]   ON THE SELF-LINKING OF KNOTS [J].
BOTT, R ;
TAUBES, C .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (10) :5247-5287
[3]  
Bourbaki N, 2002, Lie groups and Lie Algebras, DOI [10.1007/978-3-540-89394-3, DOI 10.1007/978-3-540-89394-3]
[4]  
BROWN KS, 1989, BUILDINGS
[5]   Fundamental groups of blow-ups [J].
Davis, M ;
Januszkiewicz, T ;
Scott, R .
ADVANCES IN MATHEMATICS, 2003, 177 (01) :115-179
[6]  
Davis M W., 1998, Selecta Math, V4, P491, DOI [10.1007/s000290050039, DOI 10.1007/S000290050039]
[7]  
DECONCINI G, 1995, Selecta Math. (N.S.), V1, P459, DOI 10.1007/BF01589496
[8]  
Devadoss S., 2004, NOT AM MATH SOC, V51, P620
[9]  
Devadoss S.L., 1999, CONT MATH, V239, P91, DOI DOI 10.1090/CONM/239/03599
[10]   A space of cyclohedra [J].
Devadoss, SL .
DISCRETE & COMPUTATIONAL GEOMETRY, 2003, 29 (01) :61-75