The combination of gold nanorods and nanoparticles with DNA nanodevices for logic gates construction

被引:10
作者
Yao, Dongbao [1 ]
Song, Tingjie [1 ]
Zheng, Bin [2 ]
Xiao, Shiyan [1 ]
Huang, Fujian [1 ]
Liang, Haojun [1 ,3 ]
机构
[1] Univ Sci & Technol China, Dept Polymer Sci & Engn, Collaborat Innovat Ctr Chem Energy Mat, CAS Key Lab Soft Matter Chem, Hefei 230026, Anhui, Peoples R China
[2] Hefei Normal Univ, Sch Chem & Chem Engn, Hefei 230061, Anhui, Peoples R China
[3] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
strand displacement; DNA nanodevice; logic gates; gold nanoparticles; gold nanorods; COLORIMETRIC DETECTION; STRAND DISPLACEMENT; DRIVEN; POLYNUCLEOTIDES; COMPUTATION; EFFICIENT; CIRCUITS; FACILE; DESIGN; GROWTH;
D O I
10.1088/0957-4484/26/42/425601
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, two DNA nanodevices were constructed utilizing a DNA strand displacement reaction. With the assistance of gold nanoparticles (AuNPs) and gold nanorods (AuNRs), the autonomous reactions can be reflected from the aggregation states of nanoparticles. By sequence design and the two non-overlapping double hump-like UV-vis spectral peaks of AuNPs and AuNRs, two logic gates with multiple inputs and outputs were successfully run with expected outcomes. This method not only shows how to achieve computing with multiple logic calculations but also has great potential for multiple targets detection.
引用
收藏
页数:11
相关论文
共 44 条
  • [11] Gennerich A, 2014, NAT NANOTECHNOL, V9, P11, DOI 10.1038/nnano.2013.300
  • [12] Reversible Logic Circuits Made of DNA
    Genot, Anthony J.
    Bath, Jonathan
    Turberfield, Andrew J.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (50) : 20080 - 20083
  • [13] Gold Nanoparticles for Biology and Medicine
    Giljohann, David A.
    Seferos, Dwight S.
    Daniel, Weston L.
    Massich, Matthew D.
    Patel, Pinal C.
    Mirkin, Chad A.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (19) : 3280 - 3294
  • [14] What controls the melting properties of DNA-linked gold nanoparticle assemblies?
    Jin, RC
    Wu, GS
    Li, Z
    Mirkin, CA
    Schatz, GC
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (06) : 1643 - 1654
  • [15] Quantitative Study of the Association Thermodynamics and Kinetics of DNA-Coated Particles for Different Functionalization Schemes
    Leunissen, Mirjam E.
    Dreyfus, Remi
    Sha, Roujie
    Seeman, Nadrian C.
    Chaikin, Paul M.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (06) : 1903 - 1913
  • [16] Fluorescence properties of gold nanorods and their application for DNA biosensing
    Li, CZ
    Male, KB
    Hrapovic, S
    Luong, JHT
    [J]. CHEMICAL COMMUNICATIONS, 2005, (31) : 3924 - 3926
  • [17] Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles
    Li, HX
    Rothberg, L
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (39) : 14036 - 14039
  • [18] Three-Input Majority Logic Gate and Multiple Input Logic Circuit Based on DNA Strand Displacement
    Li, Wei
    Yang, Yang
    Yan, Hao
    Liu, Yan
    [J]. NANO LETTERS, 2013, 13 (06) : 2980 - 2988
  • [19] Multiplexed colorimetric detection of Kaposi's sarcoma associated herpesvirus and Bartonella DNA using gold and silver nanoparticles
    Mancuso, Matthew
    Jiang, Li
    Cesarman, Ethel
    Erickson, David
    [J]. NANOSCALE, 2013, 5 (04) : 1678 - 1686
  • [20] Logical computation using algorithmic self-assembly of DNA triple-crossover molecules
    Mao, CD
    LaBean, TH
    Reif, JH
    Seeman, NC
    [J]. NATURE, 2000, 407 (6803) : 493 - 496