Generalized Fountain Theorem and applications to strongly indefinite semilinear problems

被引:22
作者
Batkam, Cyril Joel [1 ]
Colin, Fabrice [2 ]
机构
[1] Univ Sherbrooke, Dept Math, Sherbrooke, PQ J1K 2R1, Canada
[2] Laurentian Univ, Dept Math & Comp Sci, Sudbury, ON P3E 2C6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Variational methods; Multiple solutions; Strongly indefinite functionals; Fountain Theorem; Kryszewski-Szulkin degree; tau-topology; CRITICAL-POINT THEORY; SCHRODINGER-EQUATION; ELLIPTIC-EQUATIONS; FUNCTIONALS; SYSTEMS; SYMMETRIES; EXISTENCE;
D O I
10.1016/j.jmaa.2013.04.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using the degree theory and the tau-topology of Kryszewski and Szulkin, we establish a version of the Fountain Theorem for strongly indefinite functionals. The abstract result will be applied for studying the existence of infinitely many solutions of two strongly indefinite semilinear problems including the semilinear Schrodinger equation. (c) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:438 / 452
页数:15
相关论文
共 24 条