Lindelof theorems for monotone Sobolev functions in Orlicz spaces on uniform domains

被引:0
作者
Futamura, Toshihide [1 ]
Shimomura, Tetsu [2 ]
机构
[1] Daido Univ, Dept Math, Nagoya, Aichi 4578530, Japan
[2] Hiroshima Univ, Grad Sch Educ, Dept Math, Higashihiroshima 7398524, Japan
基金
日本学术振兴会;
关键词
Lindelof type theorem; monotone Sobolev functions; Orlicz spaces; uniform domains; Primary; Secondary; TRACES; LIMITS;
D O I
10.1002/mana.201800014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are concerned with Lindelof type theorems for monotone (in the sense of Lebesgue) Sobolev functions u on a uniform domain D subset of Rn satisfying integral(D) vertical bar del u vertical bar(z)(n-1) phi(del u(z)vertical bar)omega(delta(D)(z))dz < infinity where backward difference denotes the gradient, delta D(z) denotes the distance from z to the boundary partial differential D, phi is of log-type and omega is a weight function satisfying the doubling condition.
引用
收藏
页码:793 / 804
页数:12
相关论文
共 19 条
[1]  
[Anonymous], 1989, TRANSL MATH MONOGR
[2]   LINDELOF THEOREMS FOR MONOTONE SOBOLEV FUNCTIONS IN ORLICZ SPACES [J].
Di Biase, Fausto ;
Futamura, Toshihide ;
Shimomura, Tetsu .
ILLINOIS JOURNAL OF MATHEMATICS, 2013, 57 (04) :1025-1033
[3]  
Futamura T, 2003, ANN ACAD SCI FENN-M, V28, P271
[4]  
Futamura T., 2004, HIROSHIMA MATH J, V34, P413
[5]  
FUTAMURA T, 2005, ADV MATH SCI APPL, V0015, P00571
[6]  
Futamura T., 2005, Complex Var. Theory Appl., V50, P441
[7]   Boundary Behavior of Monotone Sobolev Functions in Orlicz Spaces on John Domains in a Metric Space [J].
Futamura, Toshihide ;
Shimomura, Tetsu .
JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (02) :1233-1244
[8]  
Heinonen J., 1993, NONLINEAR POTENTIAL
[9]   Regularity theory and traces of A-harmonic functions [J].
Koskela, P ;
Manfredi, JJ ;
Villamor, E .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (02) :755-766
[10]  
Lebesgue H., 1907, Rend. Circ. Palermo, V27, P371