High-performance hybrid capacitor based on a porous polypyrrole/reduced graphene oxide composite and a redox-active electrolyte

被引:52
作者
Moyseowicz, Adam [1 ]
Gryglewicz, Grazyna [1 ]
机构
[1] Wroclaw Univ Sci & Technol, Fac Chem, Dept Proc Engn & Technol Polymer & Carbon Mat, Gdanska 7-9, PL-50344 Wroclaw, Poland
关键词
Hybrid capacitor; Hydroquinone; Energy storage; Hydrothermal treatment; Polymer-graphene composite; HYDROTHERMAL-ASSISTED SYNTHESIS; ENERGY-STORAGE; CARBON; SUPERCAPACITORS; HYDROQUINONE; NANOCOMPOSITES; BATTERY; ENHANCEMENT; NANOFIBERS; NANOSHEETS;
D O I
10.1016/j.electacta.2020.136661
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Aqueous redox-active electrolytes can provide a significant improvement in electric energy storage for electrochemical capacitors. Herein, we report a novel hybrid capacitor consisting of porous polypyrrole/ reduced graphene oxide (PPy/rGO-HT) composite electrodes and an aqueous electrolyte with hydroquinone redox-active species. A hydrothermal-assisted synthesis of the PPy/rGO-HT composite allowed to obtain a porous polymer-graphene composite with a high specific surface area of 597 m(2) g(-1). In a three-electrode configuration with the redox-active electrolyte, PPy/rGO-HT exhibits better electrochemical performance in terms of specific capacity and cycling stability compared with that of pristine rGO. An assembled symmetric device achieves excellent long-term stability and a specific energy of 6.5 Wh kg(-1), indicating the potential of hybrid systems for energy storage applications. (C) 2020 The Authors. Published by Elsevier Ltd.
引用
收藏
页数:10
相关论文
共 66 条
[1]   Highly sensitive and simultaneous determination of hydroquinone and catechol at poly(thionine) modified glassy carbon electrode [J].
Ahammad, A. J. Saleh ;
Rahman, Md Mahbubur ;
Xu, Guang-Ri ;
Kim, Sunghyun ;
Lee, Jae-Joon .
ELECTROCHIMICA ACTA, 2011, 56 (14) :5266-5271
[2]   A Review: Fundamental Aspects of Silicate Mesoporous Materials [J].
ALOthman, Zeid A. .
MATERIALS, 2012, 5 (12) :2874-2902
[3]   Redox Solute Doped Polypyrrole for High-Charge Capacity Polymer Electrodes [J].
Arcila-Velez, Margarita R. ;
Roberts, Mark E. .
CHEMISTRY OF MATERIALS, 2014, 26 (04) :1601-1607
[4]   Pseudocapacitive oxide materials for high-rate electrochemical energy storage [J].
Augustyn, Veronica ;
Simon, Patrice ;
Dunn, Bruce .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1597-1614
[5]   Unravelling the role of temperature in a redox supercapacitor composed of multifarious nanoporous carbon@hydroquinone [J].
Barua, Aditi ;
Paul, Amit .
RSC ADVANCES, 2020, 10 (03) :1799-1810
[6]   To Be or Not To Be Pseudocapacitive? [J].
Brousse, Thierry ;
Belanger, Daniel ;
Long, Jeffrey W. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (05) :A5185-A5189
[7]   Electrochemical synthesis of graphene/polypyrrole nanotube composites for multifunctional applications [J].
Cai, Zhuo ;
Xiong, Huizhi ;
Zhu, Zhenni ;
Huang, Huabo ;
Li, Liang ;
Huang, Yineng ;
Yu, Xianghua .
SYNTHETIC METALS, 2017, 227 :100-105
[8]   The effect of surface characteristics of reduced graphene oxide on the performance of a pseudocapacitor [J].
Chang, M. S. ;
Kim, T. ;
Kang, J. H. ;
Park, J. ;
Park, C. R. .
2D MATERIALS, 2015, 2 (01)
[9]   Hierarchical polypyrrole based composites for high performance asymmetric supercapacitors [J].
Chen, Gao-Feng ;
Liu, Zhao-Qing ;
Lin, Jia-Ming ;
Li, Nan ;
Su, Yu-Zhi .
JOURNAL OF POWER SOURCES, 2015, 283 :484-493
[10]   Capacitance enhancement of polyaniline coated curved-graphene supercapacitors in a redox-active electrolyte [J].
Chen, Wei ;
Rakhi, R. B. ;
Alshareef, H. N. .
NANOSCALE, 2013, 5 (10) :4134-4138