Yttria stabilized zirconia thick coatings were thermally sprayed from two different feedstock powders. Coating characteristics such as density, crystalline phase composition, and microstructure were evaluated. The thermal expansion coefficient and thermal diffusivity were measured as a function of temperature up to 800 C and analyzed in terms of the microstructural features. The ability of available models to relate the measured thermal properties to the microstructural features as characterized by readily available methods was assessed. The importance of pore shape and orientation on the thermal conductivity was evidenced. The thermal contact resistance between the substrate and the coating in these samples was estimated from the thermal diffusivity data, and found to change during cooling from 800 C.