A Hermite-Gauss method for the approximation of eigenvalues of regular Sturm-Liouville problems

被引:3
作者
Asharabi, Rashad M. [1 ]
机构
[1] Najran Univ, Coll Arts & Sci, Dept Math, Najran, Saudi Arabia
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2016年
关键词
sinc methods; Sturm-Liouville problem; error bounds; convergence rate; 2ND-ORDER LINEAR PENCILS; COMPUTING EIGENVALUES; SAMPLING METHOD; BOUNDARY;
D O I
10.1186/s13660-016-1098-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, some authors have used the sinc/Gaussian sampling technique to approximate eigenvalues of boundary value problems rather than the classical sinc technique because the sinc-Gaussian technique has a convergence rate of the exponential order, O(e(-(pi-h sigma)N/2)/root N), where sigma, h are positive numbers and N is the number of terms in sinc-Gaussian technique. As is well known, the other sampling techniques (classical sinc, generalized sinc, Hermite) have a convergence rate of a polynomial order. In this paper, we use the Hermite-Gauss operator, which is established by Asharabi and Prestin (Numer. Funct. Anal. Optim. 36: 419-437, 2015), to construct a new sampling technique to approximate eigenvalues of regular Sturm-Liouville problems. This technique will be new and its accuracy is higher than the sinc-Gaussian because Hermite-Gauss has a convergence rate of order O(e(-(pi-h sigma)N/2) /root N). Numerical examples are given with comparisons with the best sampling technique up to now, i.e. sinc-Gaussian.
引用
收藏
页数:10
相关论文
共 17 条
[1]  
Annaby MH, 2007, IMA J NUMER ANAL, V27, P366, DOI [10.1093/imanum/dr1026, 10.1093/imanum/drl026]
[2]   A sinc-Gaussian technique for computing eigenvalues of second-order linear pencils [J].
Annaby, M. H. ;
Tharwat, M. M. .
APPLIED NUMERICAL MATHEMATICS, 2013, 63 :129-137
[3]  
Annaby M. H., 2008, Sampling Theory in Signal and Image Processing, V7, P293
[4]   Approximating eigenvalues of discontinuous problems by sampling theorems [J].
Annaby, M. H. ;
Asharabi, R. M. .
JOURNAL OF NUMERICAL MATHEMATICS, 2008, 16 (03) :163-183
[5]   On SINC-BASED method in computing eigenvalues of boundary-value problems [J].
Annaby, M. H. ;
Asharabi, R. M. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (02) :671-690
[6]   Computing eigenvalues of Sturm-Liouville problems by Hermite interpolations [J].
Annaby, Mahmoud H. ;
Asharabi, Rashad M. .
NUMERICAL ALGORITHMS, 2012, 60 (03) :355-367
[7]   Generalized sinc-Gaussian sampling involving derivatives [J].
Asharabi, R. M. .
NUMERICAL ALGORITHMS, 2016, 73 (04) :1055-1072
[8]   On two-dimensional classical and Hermite sampling [J].
Asharabi, R. M. ;
Prestin, J. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (02) :851-871
[9]   A Modification of Hermite Sampling with a Gaussian Multiplier [J].
Asharabi, R. M. ;
Prestin, J. .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2015, 36 (04) :419-437
[10]   The sampling method for Sturm-Liouville problems with the eigenvalue parameter in the boundary [J].
Boumenir, A .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2000, 21 (1-2) :67-75