Broadband, Polarization-Sensitive Photodetector Based on Optically-Thick Films of Macroscopically Long, Dense, and Aligned Carbon Nanotubes

被引:110
作者
Nanot, Sebastien [1 ]
Cummings, Aron W. [2 ]
Pint, Cary L. [3 ]
Ikeuchi, Akira [4 ]
Akiho, Takafumi [4 ]
Sueoka, Kazuhisa [4 ]
Hauge, Robert H. [5 ]
Leonard, Francois [2 ]
Kono, Junichiro [1 ,6 ]
机构
[1] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA
[2] Sandia Natl Labs, Livermore, CA 94551 USA
[3] Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37240 USA
[4] Hokkaido Univ, Grad Sch Informat Sci & Technol, Sapporo, Hokkaido 0600814, Japan
[5] Rice Univ, Dept Chem, Houston, TX 77005 USA
[6] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA
基金
美国国家科学基金会;
关键词
PHOTOCURRENT GENERATION; PHOTOCONDUCTIVITY; PHOTORESPONSE; CONTACT; PHOTONICS; TRANSPORT; BARRIERS;
D O I
10.1038/srep01335
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Increasing performance demands on photodetectors and solar cells require the development of entirely new materials and technological approaches. We report on the fabrication and optoelectronic characterization of a photodetector based on optically-thick films of dense, aligned, and macroscopically long single-wall carbon nanotubes. The photodetector exhibits broadband response from the visible to the mid-infrared under global illumination, with a response time less than 32 mu s. Scanning photocurrent microscopy indicates that the signal originates at the contact edges, with an amplitude and width that can be tailored by choosing different contact metals. A theoretical model demonstrates the photothermoelectric origin of the photoresponse due to gradients in the nanotube Seebeck coefficient near the contacts. The experimental and theoretical results open a new path for the realization of optoelectronic devices based on three-dimensionally organized nanotubes.
引用
收藏
页数:7
相关论文
共 40 条
[1]   Broad Spectral Response Using Carbon Nanotube/Organic Semiconductor/C60 Photodetectors [J].
Arnold, Michael S. ;
Zimmerman, Jeramy D. ;
Renshaw, Christopher K. ;
Xu, Xin ;
Lunt, Richard R. ;
Austin, Christine M. ;
Forrest, Stephen R. .
NANO LETTERS, 2009, 9 (09) :3354-3358
[2]   Carbon-nanotube photonics and optoelectronics [J].
Avouris, Phaedon ;
Freitag, Marcus ;
Perebeinos, Vasili .
NATURE PHOTONICS, 2008, 2 (06) :341-350
[3]   Photocurrent imaging of charge transport barriers in carbon nanotube devices [J].
Balasubramanian, K ;
Burghard, M ;
Kern, K ;
Scolari, M ;
Mews, A .
NANO LETTERS, 2005, 5 (03) :507-510
[4]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[5]   Nanowelded carbon-nanotube-based solar microcells [J].
Chen, Changxin ;
Lu, Yang ;
Kong, Eric S. ;
Zhang, Yafei ;
Lee, Shuit-Tong .
SMALL, 2008, 4 (09) :1313-1318
[6]   Spatially Resolved Electrostatic Potential and Photocurrent Generation in Carbon Nanotube Array Devices [J].
Engel, Michael ;
Steiner, Mathias ;
Sundaram, Ravi S. ;
Krupke, Ralph ;
Green, Alexander A. ;
Hersam, Mark C. ;
Avouris, Phaedon .
ACS NANO, 2012, 6 (08) :7303-7310
[7]  
Freitag M., 2012, ARXIV12025342V1
[8]   Imaging of the schottky barriers and charge depletion in carbon nanotube transistors [J].
Freitag, Marcus ;
Tsang, James C. ;
Bol, Ageeth ;
Yuan, Dongning ;
Liu, Jie ;
Avouris, Phaedon .
NANO LETTERS, 2007, 7 (07) :2037-2042
[9]   Hot Carrier-Assisted Intrinsic Photoresponse in Graphene [J].
Gabor, Nathaniel M. ;
Song, Justin C. W. ;
Ma, Qiong ;
Nair, Nityan L. ;
Taychatanapat, Thiti ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Levitov, Leonid S. ;
Jarillo-Herrero, Pablo .
SCIENCE, 2011, 334 (6056) :648-652
[10]   Extremely Efficient Multiple Electron-Hole Pair Generation in Carbon Nanotube Photodiodes [J].
Gabor, Nathaniel M. ;
Zhong, Zhaohui ;
Bosnick, Ken ;
Park, Jiwoong ;
McEuen, Paul L. .
SCIENCE, 2009, 325 (5946) :1367-1371