Numerical evidence for anomalous dynamic scaling in conserved surface growth

被引:13
作者
Xia, Hui [1 ]
Tang, Gang [1 ]
Xun, Zhipeng [1 ]
Hao, Dapeng [1 ]
机构
[1] China Univ Min & Technol, Dept Phys, Xuzhou 221116, Peoples R China
关键词
Conserved growth equations; Dynamic scaling behavior; Anomalous roughening; MOLECULAR-BEAM EPITAXY; KINETIC-GROWTH; INSTABILITY; MODELS; CONTINUUM; INTERFACES; WIDTH;
D O I
10.1016/j.susc.2012.08.025
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
According to the scaling idea of local slope, we investigate the anomalous dynamic scaling of a class of nonequilibrium conserved growth equations in (1 + 1)- and (2 + 1)-dimensions using numerical integration. The conserved growth models include the linear Molecular-Beam Epitaxy (LMBE), the nonlinear Villain-Lai-Das Sarma (VLDS) and Sun-Guo-Grant (SGG) equations. To suppress the instability in the VLDS and SGG equations, the nonlinear terms are replaced by exponentially decreasing functions. The critical exponents in different growth regions are obtained. Our results are consistent with the corresponding analytical predictions. The anomalous scaling properties are proved in (1 + 1)-dimensional LMBE and VLDS equations for Molecular-Beam Epitaxy (MBE) growth. However, anomalous roughening in the LMBE and VLDS surfaces is very weak in the physically relevant case of (2 + 1)-dimensions. Furthermore, we find that, in both (1 + 1)- and (2 + 1)-dimensions, anomalous scaling behavior does not appear in the SGG surface based on scaling approach and numerical evidence. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:138 / 147
页数:10
相关论文
共 50 条
  • [31] Numerical study of the Kardar-Parisi-Zhang equation
    Miranda, Vladimir G.
    Reis, Fabio D. A. Aarao
    [J]. PHYSICAL REVIEW E, 2008, 77 (03):
  • [32] Anomalous roughening of wood fractured surfaces
    Morel, S
    Schmittbuhl, J
    López, JM
    Valentin, G
    [J]. PHYSICAL REVIEW E, 1998, 58 (06): : 6999 - 7005
  • [33] Anomalous scaling of mortar fracture surfaces
    Mourot, G
    Morel, S
    Bouchaud, E
    Valentin, G
    [J]. PHYSICAL REVIEW E, 2005, 71 (01):
  • [34] Dynamics of growing surfaces by linear equations in 2+1 dimensions
    Pang, Ning-Ning
    Li, Wan-Ju
    Chang, Yu-Chiao
    Tzeng, Wen-Jer
    Wang, Juven
    [J]. PHYSICAL REVIEW E, 2007, 75 (01):
  • [35] Interfaces with superroughness
    Pang, NN
    Tzeng, WJ
    [J]. PHYSICAL REVIEW E, 2000, 61 (04): : 3559 - 3563
  • [36] Ehrlich-Schwoebel instability in molecular-beam epitaxy: A minimal model
    Politi, P
    Villain, J
    [J]. PHYSICAL REVIEW B, 1996, 54 (07): : 5114 - 5129
  • [37] Two-dimensional scaling properties of experimental fracture surfaces
    Ponson, L
    Bonamy, D
    Bouchaud, E
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (03)
  • [38] Intrinsic versus superrough anomalous scaling in spontaneous imbibition
    Pradas, M.
    Hernandez-Machado, A.
    [J]. PHYSICAL REVIEW E, 2006, 74 (04):
  • [39] Generic dynamic scaling in kinetic roughening
    Ramasco, JJ
    López, JM
    Rodríguez, MA
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (10) : 2199 - 2202
  • [40] Anomalous scaling of nickel surfaces in pulse-current electrodeposition growth
    Saitou, M
    [J]. PHYSICAL REVIEW B, 2002, 66 (07): : 1 - 4