Generalized quantum tomographic maps

被引:5
作者
Asorey, M. [1 ]
Facchi, P. [2 ,3 ,4 ]
Man'ko, V. I. [5 ]
Marmo, G. [6 ,7 ,8 ]
Pascazio, S. [4 ,9 ,10 ]
Sudarshan, E. C. G. [11 ]
机构
[1] Univ Zaragoza, Fac Ciencias, Dept Fis Teor, E-50009 Zaragoza, Spain
[2] Univ Bari, Dipartimento Matemat, I-70125 Bari, Italy
[3] Univ Bari, MECENAS, I-70125 Bari, Italy
[4] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy
[5] PN Lebedev Phys Inst, Moscow 119991, Russia
[6] Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy
[7] Univ Naples Federico II, MECENAS, I-80126 Naples, Italy
[8] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy
[9] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy
[10] Univ Bari, MECENAS, I-70126 Bari, Italy
[11] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
基金
俄罗斯基础研究基金会;
关键词
WIGNER FUNCTION; DENSITY-MATRIX; REPRESENTATION; VACUUM; SPACES; STATES;
D O I
10.1088/0031-8949/85/06/065001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Some nonlinear generalizations of classical Radon tomography were introduced by Asorey et al (2008 Phys. Rev. A 77 042115), where the straight lines of the standard Radon map are replaced by quadratic curves (ellipses, hyperbolas and circles) or quadratic surfaces (ellipsoids, hyperboloids and spheres). We consider here the quantum version of this novel nonlinear approach and obtain, by the systematic use of the Weyl map, a tomographic encoding approach to quantum states. Nonlinear quantum tomograms admit a simple formulation within the framework of the star-product quantization scheme and the reconstruction formulae of the density operators are explicitly given in a closed form, with an explicit construction of quantizers and dequantizers. The role of symmetry groups behind the generalized tomographic maps is analyzed in some detail. We also introduce new generalizations of the standard singular dequantizers of the symplectic tomographic schemes, where the Dirac delta-distributions of operator-valued arguments are replaced by smooth window functions, giving rise to the new concept of thick quantum tomography. Applications in quantum state measurements of photons and matter waves are discussed.
引用
收藏
页数:8
相关论文
共 40 条
[1]   State reconstruction by on/off measurements [J].
Allevi, Alessia ;
Andreoni, Alessandra ;
Bondani, Maria ;
Brida, Giorgio ;
Genovese, Marco ;
Gramegna, Marco ;
Traina, Paolo ;
Olivares, Stefano ;
Paris, Matteo G. A. ;
Zambra, Guido .
PHYSICAL REVIEW A, 2009, 80 (02)
[2]  
[Anonymous], 2004, LECT NOTES PHYS
[3]  
[Anonymous], 1917, J MATH PHYS, DOI DOI 10.1109/TMI.1986.4307775
[4]   Quantum transitions in the center-of-mass tomographic probability representation [J].
Arkhipov, AS ;
Man'ko, VI .
PHYSICAL REVIEW A, 2005, 71 (01)
[5]   Generalized tomographic maps [J].
Asorey, M. ;
Facchi, P. ;
Man'ko, V. I. ;
Marmo, G. ;
Pascazio, S. ;
Sudarshan, E. C. G. .
PHYSICAL REVIEW A, 2008, 77 (04)
[6]   Robustness of raw quantum tomography [J].
Asorey, M. ;
Facchi, P. ;
Florio, G. ;
Man'ko, V. I. ;
Marmo, G. ;
Pascazio, S. ;
Sudarshan, E. C. G. .
PHYSICS LETTERS A, 2011, 375 (05) :861-866
[7]   Radon transform on the cylinder and tomography of a particle on the circle [J].
Asorey, M. ;
Facchi, P. ;
Man'ko, V. I. ;
Marmo, G. ;
Pascazio, S. ;
Sudarshan, E. G. C. .
PHYSICAL REVIEW A, 2007, 76 (01)
[8]   Neutron wave-packet tomography [J].
Badurek, G ;
Facchi, P ;
Hasegawa, Y ;
Hradil, Z ;
Pascazio, S ;
Rauch, H ;
Rehácek, J ;
Yoneda, T .
PHYSICAL REVIEW A, 2006, 73 (03)
[9]   Perturbative quantum-state estimation [J].
Banas, P. ;
Rehacek, J. ;
Hradil, Z. .
PHYSICAL REVIEW A, 2006, 74 (01)
[10]   A TOMOGRAPHIC APPROACH TO WIGNER FUNCTION [J].
BERTRAND, J ;
BERTRAND, P .
FOUNDATIONS OF PHYSICS, 1987, 17 (04) :397-405