On generalized fractional integral inequalities for the monotone weighted Chebyshev functionals

被引:72
作者
Rahman, Gauhar [1 ]
Nisar, Kottakkaran Sooppy [2 ]
Ghanbari, Behzad [3 ,4 ]
Abdeljawad, Thabet [5 ,6 ,7 ]
机构
[1] Shaheed Benazir Bhutto Univ, Dept Math, Upper Dir, Khyber Pakhtoon, Pakistan
[2] Prince Sattam Bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawaser 11991, Saudi Arabia
[3] Kermanshah Univ Technol, Dept Engn Sci, Kermanshah, Iran
[4] Bahcesehir Lnivers, Fac Engn & Nat Sci, Dept Math, TR-34349 Istanbul, Turkey
[5] Prince Sultan Univ, Dept Math & Gen Sci, POB 66833, Riyadh 11586, Saudi Arabia
[6] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[7] Asia Univ, Dept Comp Sci & Informat Engn, Taichung 40402, Taiwan
关键词
Fractional integrals; The generalized fractional integrals; Fractional integral inequalities; The Chebyshev functional; GRUSS TYPE;
D O I
10.1186/s13662-020-02830-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish the generalized Riemann-Liouville (RL) fractional integrals in the sense of another increasing, positive, monotone, and measurable function psi. We determine certain new double-weighted type fractional integral inequalities by utilizing the said integrals. We also give some of the new particular inequalities of the main result. Note that we can form various types of new inequalities of fractional integrals by employing conditions on the function psi given in the paper. We present some corollaries as particular cases of the main results.
引用
收藏
页数:19
相关论文
共 61 条
  • [1] Generalization of Caputo-Fabrizio Fractional Derivative and Applications to Electrical Circuits
    Alshabanat, Amal
    Jleli, Mohamed
    Kumar, Sunil
    Samet, Bessem
    [J]. FRONTIERS IN PHYSICS, 2020, 8
  • [2] [Anonymous], 2004, Applied Inequalities
  • [3] [Anonymous], 2019, MATHEMATICS BASEL, DOI DOI 10.3390/MATH7040364
  • [4] [Anonymous], 2020, MATHEMATICS BASEL, DOI DOI 10.3390/math8020222
  • [5] STEFFENSEN'S GENERALIZATION OF CEBYSEV INEQUALITY
    Awan, K. M.
    Pecaric, J.
    Rehman, Atiq Ur
    [J]. Journal of Mathematical Inequalities, 2015, 9 (01): : 155 - 163
  • [6] Belarbi S., 2009, J INEQUAL PURE APPL, V10, P86
  • [7] Bezziou M., 2019, SARAJEVO J MATH, V15, P23
  • [8] Bezziou M., 2018, MATHEMATICA, V60, P12, DOI DOI 10.24193/MATHCLUJ.2018.1.02
  • [9] Cebysev P. L., 1882, Proc. Math. Soc. Charkov, V2, P93
  • [10] A REFINEMENT OF THE GRUSS INEQUALITY AND APPLICATIONS
    Cerone, P.
    Dragomir, S. S.
    [J]. TAMKANG JOURNAL OF MATHEMATICS, 2007, 38 (01): : 37 - 49