Examination of the electroactive composites containing cobalt nanoclusters and nitrogen-doped nanostructured carbon as electrocatalysts for oxygen reduction reaction

被引:20
|
作者
Pacula, Aleksandra [1 ,2 ,3 ]
Ikeda, Katsuyoshi [3 ,4 ]
Masuda, Takuya [3 ,4 ]
Uosaki, Kohei [2 ,3 ,4 ]
机构
[1] Polish Acad Sci, Jerzy Haber Inst Catalysis & Surface Chem, PL-30239 Krakow, Poland
[2] Natl Inst Mat Sci NIMS, Int Ctr Mat Nanoarchitecton WPI MANA, Tsukuba, Ibaraki 3050044, Japan
[3] Hokkaido Univ, Div Chem, Grad Sch Sci, Sapporo, Hokkaido 0600810, Japan
[4] Natl Inst Mat Sci NIMS, Global Res Ctr Environm & Energy Based Nanomat Sc, Tsukuba, Ibaraki 3050044, Japan
关键词
Carbon nanotube; Layered double hydroxides; Electrocatalyst; Composite; Catalytic chemical vapour deposition; Oxygen reduction reaction; CHEMICAL-VAPOR-DEPOSITION; MEMBRANE FUEL-CELLS; CATALYTIC-ACTIVITY; O-2; REDUCTION; ELECTROCHEMICAL REDUCTION; THERMAL-DECOMPOSITION; SURFACE-CHEMISTRY; METAL PARTICLES; NANOTUBES; XPS;
D O I
10.1016/j.jpowsour.2012.07.077
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A series of electroactive composites containing cobalt nanoclusters and N-doped graphite-like carbon is obtained by catalytic chemical vapour deposition (CCVD) using Mg-Co-Al layered double hydroxides and acetonitrile. The influence of synthesis temperature, e.g. 600, 700 and 800 degrees C on their physico-chemical properties is examined by means of X-ray diffraction, elemental analysis, thermal analysis, nitrogen sorption, Raman spectroscopy, X-ray photoelectron spectroscopy, scanning and transmission electron microscopy. N-doped graphite-like carbon in the catalysts shows various morphologies. The composite prepared at 600 degrees C contains plate-like particles, whereas those synthesized at 700 and 800 degrees C, contain not only plate-like particles but also multi-walled carbon nanotubes. The concentration of nitrogen uniformly incorporated in the carbon framework is ca. 2 wt %. The electrocatalytic properties of the catalysts for oxygen reduction reaction (ORR) are evaluated in alkaline media by cyclic voltammetry and rotating disk electrode (RDE) measurement. The composites are proved to have the ability to reduce oxygen according to 2-electron pathway. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:20 / 30
页数:11
相关论文
共 50 条
  • [21] Nitrogen Doped Carbon with Metal as Electrocatalysts for the Oxygen Reduction Reaction
    Meng, Hui
    Ouyang, Wenpeng
    Xie, Fangyan
    Zhang, Weihong
    Chen, Jian
    Yuan, Dingshen
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (13) : F1373 - F1379
  • [22] Nitrogen-doped porous carbon embedded with cobalt nanoparticles for excellent oxygen reduction reaction
    Lu, Yaxiang
    Wen, Xin
    Chen, Xuecheng
    Chu, Paul K.
    Tang, Tao
    Mijowska, Ewa
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 546 : 344 - 350
  • [23] Nitrogen-doped carbon nanofibers on expanded graphite as oxygen reduction electrocatalysts
    Buan, Marthe E. M.
    Muthuswamy, Navaneethan
    Walmsley, John C.
    Chen, De
    Ronning, Magnus
    CARBON, 2016, 101 : 191 - 202
  • [24] Towards Effective Utilization of Nitrogen-Containing Active Sites: Nitrogen-doped Carbon Layers Wrapped CNTs Electrocatalysts for Superior Oxygen Reduction
    Nie, Yao
    Xie, Xiaohong
    Chen, Siguo
    Ding, Wei
    Qi, Xueqiang
    Wang, Yao
    Wang, Jun
    Li, Wei
    Wei, Zidong
    Shao, Minhua
    ELECTROCHIMICA ACTA, 2016, 187 : 153 - 160
  • [25] Phosphonate-derived nitrogen-doped cobalt phosphate/carbon nanotube hybrids as highly active oxygen reduction reaction electrocatalysts
    Zhao, Hui
    Weng, Chen-Chen
    Ren, Jin-Tao
    Ge, Li
    Liu, Yu-Ping
    Yuan, Zhong-Yong
    CHINESE JOURNAL OF CATALYSIS, 2020, 41 (02) : 259 - 267
  • [26] PtZn nanoparticles supported on porous nitrogen-doped carbon nanofibers as highly stable electrocatalysts for oxygen reduction reaction
    Zhao, Lei
    Jiang, Jinxia
    Xiao, Shuhao
    Li, Zhao
    Wang, Junjie
    Wei, Xinxin
    Kong, Qingquan
    Chen, Jun Song
    Wu, Rui
    NANO MATERIALS SCIENCE, 2023, 5 (03) : 329 - 334
  • [27] Oxygen Reduction Reaction Activity of Thermally Tailored Nitrogen-Doped Carbon Electrocatalysts Prepared through Plasma Synthesis
    Li, Oi Lun
    Wada, Yuta
    Kaneko, Amane
    Lee, Hoonseung
    Ishizaki, Takahiro
    CHEMELECTROCHEM, 2018, 5 (14): : 1995 - 2001
  • [28] Graphdiyne and Nitrogen-Doped Graphdiyne Nanotubes as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction
    Liu, Tongchang
    Hao, Xinmeng
    Liu, Jiaqi
    Zhang, Pengfei
    Chang, Jiaming
    Shang, Hong
    Liu, Xuanhe
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (23)
  • [29] Open-Mouthed Hollow Carbons: Systematic Studies as Cobalt- and Nitrogen-Doped Carbon Electrocatalysts for Oxygen Reduction Reaction
    Zhao, Yingji
    Nara, Hiroki
    Jiang, Dong
    Asahi, Toru
    Osman, Sameh M.
    Kim, Jeonghun
    Tang, Jing
    Yamauchi, Yusuke
    SMALL, 2023, 19 (48)
  • [30] Nitrogen-doped carbon xerogels as novel cathode electrocatalysts for oxygen reduction reaction in direct borohydride fuel cells
    Jin, Hong
    Li, Jinyang
    Chen, Fuyu
    Gao, Lianxing
    Zhang, Huamin
    Liu, Dejun
    Liu, Qingyu
    ELECTROCHIMICA ACTA, 2016, 222 : 438 - 445