Near-Room-Temperature Magnetoelectric Coupling via Spin Crossover in an Iron(II) Complex

被引:13
作者
Owczarek, Magdalena [1 ]
Lee, Minseong [2 ]
Liu, Shuanglong [3 ]
Blake, Ella R. [4 ]
Taylor, Chloe S. [4 ]
Newman, Georgia A. [4 ]
Eckert, James C. [4 ]
Leal, Juan H. [5 ]
Semelsberger, Troy A. [5 ]
Cheng, Hai-Ping [3 ]
Nie, Wanyi [1 ]
Zapf, Vivien S. [2 ]
机构
[1] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA
[3] Univ Florida, Ctr Mol Magnet Quantum Mat, Dept Phys, Quantum Theory Project, Gainesville, FL 32611 USA
[4] Harvey Mudd Coll, Claremont, CA 91711 USA
[5] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA
基金
美国国家科学基金会;
关键词
Magnetic Properties; Magnetoelectric Coupling; Molecular Magnet; Spin Crossover; Structural Phase Transition; MAGNETIC-FIELD; STATE; TRANSITION;
D O I
10.1002/anie.202214335
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Magnetoelectric coupling is achieved near room temperature in a spin crossover Fe-II molecule-based compound, [Fe(1bpp)(2)](BF4)(2). Large atomic displacements resulting from Jahn-Teller distortions induce a change in the molecule dipole moment when switching between high-spin and low-spin states leading to a step-wise change in the electric polarization and dielectric constant. For temperatures in the region of bistability, the changes in magnetic and electrical properties are induced with a remarkably low magnetic field of 3 T. This result represents a successful expansion of magnetoelectric spin crossovers towards ambient conditions. Moreover, the observed 0.3-0.4 mC m(-2) changes in the H-induced electric polarization suggest that the high strength of the coupling obtained via this route is accessible not just at cryogenic temperatures but also near room temperature, a feature that is especially appealing in the light of practical applications.
引用
收藏
页数:6
相关论文
共 41 条
  • [1] Multiferroics:: Towards a magnetoelectric memory
    Bibes, Manuel
    Barthelemy, Agnes
    [J]. NATURE MATERIALS, 2008, 7 (06) : 425 - 426
  • [2] Magnetoelectronics with magnetoelectrics
    Binek, C
    Doudin, B
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (02) : L39 - L44
  • [3] Strain-mediated magnetoelectrics: Turning science fiction into reality
    Carman, Greg P.
    Sun, Nian
    [J]. MRS BULLETIN, 2018, 43 (11) : 822 - 828
  • [4] Magnetoelectric behavior via a spin state transition
    Chikara, Shalinee
    Gu, Jie
    Zhang, X. -G.
    Cheng, Hai-Ping
    Smythe, Nathan
    Singleton, John
    Scott, Brian
    Krenkel, Elizabeth
    Eckert, Jim
    Zapf, Vivien S.
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [5] Dobbelaar E., 2022, ANGEW CHEM, V134
  • [6] Thermal and Magnetic Field Switching in a Two-Step Hysteretic MnIII Spin Crossover Compound Coupled to Symmetry Breakings
    Dobbelaar, Emiel
    Jakobsen, Vibe B.
    Trzop, Elzbieta
    Lee, Minseong
    Chikara, Shalinee
    Ding, Xiaxin
    Muller-Bunz, Helge
    Esien, Kane
    Felton, Solveig
    Carpenter, Michael A.
    Collet, Eric
    Morgan, Grace G.
    Zapf, Vivien S.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (04)
  • [7] Spin state switching in iron coordination compounds
    Guetlich, Philipp
    Gaspar, Ana B.
    Garcia, Yann
    [J]. BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY, 2013, 9 : 342 - 391
  • [8] Spin crossover -: An overall perspective
    Gütlich, P
    Goodwin, HA
    [J]. SPIN CROSSOVER IN TRANSITION METAL COMPOUNDS I, 2004, 233 : 1 - 47
  • [9] Halcrow M. A., 2013, SPIN CROSSOVER MAT P
  • [10] Guest-dependent spin crossover in a nanoporous molecular framework material
    Halder, GJ
    Kepert, CJ
    Moubaraki, B
    Murray, KS
    Cashion, JD
    [J]. SCIENCE, 2002, 298 (5599) : 1762 - 1765