Integrated process for electrocatalytic conversion of glycerol to chemicals and catalytic conversion of corn stover to fuels

被引:12
作者
Byun, Jaewon [1 ]
Ahn, Yuchan [1 ]
Kim, Juyeon [1 ]
Kim, Jeong-Rang [2 ]
Jeong, Soon-Yong [2 ]
Kim, Beom-Sik [2 ]
Kim, Hyung Ju [2 ,3 ]
Han, Jeehoon [1 ,4 ]
机构
[1] Chonbuk Natl Univ, Sch Semicond & Chem Engn, 567 Baekje Daero, Jeonju 54896, South Korea
[2] Korea Res Inst Chem Technol, Carbon Resources Inst, 141 Gajeong Ro, Yuseong 34114, Daejeon, South Korea
[3] Univ Sci & Technol, Dept Green Chem & Biotechnol, 113 Gwahangno, Yuseong 34113, Daejeon, South Korea
[4] Chonbuk Natl Univ, Sch Chem Engn, 567 Baekje Daero, Jeonju 54896, South Korea
基金
新加坡国家研究基金会;
关键词
Electrocatalytic conversion; Catalytic conversion; Glycerol to chemicals; Corn stover to fuels; Integrated process; Economic feasibility; LIGNOCELLULOSIC BIOMASS; GAMMA-VALEROLACTONE; TETRAHYDROFURFURYL ALCOHOL; 3RD-GENERATION BIOFUEL; TRANSPORTATION FUELS; COMMODITY CHEMICALS; LEVULINIC ACID; HEMICELLULOSE; CELLULOSE; STRATEGY;
D O I
10.1016/j.enconman.2018.02.059
中图分类号
O414.1 [热力学];
学科分类号
摘要
This study presents two biomass conversion strategies: electrocatalytic glycerol-to-chemicals (eGTC) and catalytic corn stover-to-fuels (cCTF). The effect of process integration combining eGTC with cCTF on a commercial scale is investigated to improve energy efficiency and economics of the strategies. In the integrated process strategy, most of the heat requirements for eGTC are supplied by cCTF, and most of the hydrogen requirements for cCTF are provided by eGTC. Process integration leads to higher energy efficiency (27.6%) of integrated process strategy compared to the eGTC-only process (11.4%). The minimum selling price for the integrated process strategy is estimated to $2.35/kg(GLA) which can be more economically feasible than the eGTC-only process strategy ($2.55/kg(GLA)).
引用
收藏
页码:180 / 186
页数:7
相关论文
共 41 条
[1]   Catalytic production of 1,4-pentanediol from corn stover [J].
Ahn, Yu-Chan ;
Han, Jeehoon .
BIORESOURCE TECHNOLOGY, 2017, 245 :442-448
[2]   Third generation biofuel from Algae [J].
Alam, Firoz ;
Mobin, Saleh ;
Chowdhury, Harun .
6TH BSME INTERNATIONAL CONFERENCE ON THERMAL ENGINEERING, 2015, 105 :763-768
[3]   Technologies and developments of third generation biofuel production [J].
Alaswad, A. ;
Dassisti, M. ;
Prescott, T. ;
Olabi, A. G. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 51 :1446-1460
[4]  
Alonso DM, 2013, ENERG ENVIRON SCI, V6, P76, DOI [10.1039/c2ee23617f, 10.1039/C2EE23617F]
[5]   Catalytic conversion of biomass to biofuels [J].
Alonso, David Martin ;
Bond, Jesse Q. ;
Dumesic, James A. .
GREEN CHEMISTRY, 2010, 12 (09) :1493-1513
[6]   Review on biofuel oil and gas production processes from microalgae [J].
Amin, Sarmidi .
ENERGY CONVERSION AND MANAGEMENT, 2009, 50 (07) :1834-1840
[7]   The potential of glycerol as a value-added commodity [J].
Anitha, M. ;
Kamarudin, S. K. ;
Kofli, N. T. .
CHEMICAL ENGINEERING JOURNAL, 2016, 295 :119-130
[8]   Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review [J].
Balat, Mustafa .
ENERGY CONVERSION AND MANAGEMENT, 2011, 52 (02) :858-875
[9]   Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic processing of biomass [J].
Bond, Jesse Q. ;
Upadhye, Aniruddha A. ;
Olcay, Hakan ;
Tompsett, Geoffrey A. ;
Jae, Jungho ;
Xing, Rong ;
Alonso, David Martin ;
Wang, Dong ;
Zhang, Taiying ;
Kumar, Rajeev ;
Foster, Andrew ;
Sen, S. Murat ;
Maravelias, Christos T. ;
Malina, Robert ;
Barrett, Steven R. H. ;
Lobo, Raul ;
Wyman, Charles E. ;
Dumesic, James A. ;
Huber, George W. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (04) :1500-1523
[10]   Integrated Catalytic Conversion of γ-Valerolactone to Liquid Alkenes for Transportation Fuels [J].
Bond, Jesse Q. ;
Alonso, David Martin ;
Wang, Dong ;
West, Ryan M. ;
Dumesic, James A. .
SCIENCE, 2010, 327 (5969) :1110-1114