Integer points close to algebraic curves

被引:0
作者
Boca, FP
Vâjâitu, M
Zaharescu, A
机构
[1] Romanian Acad, Inst Math, Bucharest 70700, Romania
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2002年 / 65卷
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1112/S0024610701002812
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any algebraic curve with unbounded branches in the plane, two numbers in (0,infinity] are defined that measure how closely to the curve it is possible to find infinitely many integer points. These numbers are shown to be 1 for almost all such curves. The state of the art in estimating these numbers for several classes of curves is also discussed.
引用
收藏
页码:10 / 26
页数:17
相关论文
共 16 条
[1]  
Baker RC., 1986, DIOPHANTINE INEQUALI
[2]   QUANTITATIVE RECURRENCE RESULTS [J].
BOSHERNITZAN, MD .
INVENTIONES MATHEMATICAE, 1993, 113 (03) :617-631
[3]  
Elkies ND, 2000, LECT NOTES COMPUT SC, V1838, P33
[4]  
Furstenberg H., 1981, RECURRENCE ERGODIC T
[5]  
HARMAN G, 1998, London Mathematical Society Monographs. New Series, V18
[6]  
KUIPERS L, 1974, UNIFORM DISTRIBUTION
[7]   OLD AND NEW CONJECTURED DIOPHANTINE INEQUALITIES [J].
LANG, S .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 23 (01) :37-75
[8]  
LeVeque W. J., 1959, J REINE ANGEW MATH, V202, P215
[9]  
Roth K. F., 1955, Mathematika, V2, P1
[10]  
Schmidt W. M., 1977, REGIONAL C SERIES MA, V32