Bridges and random truncations of random matrices

被引:2
|
作者
Beffara, Vincent [1 ]
Donati-Martin, Catherine [2 ]
Rouault, Alain [2 ]
机构
[1] ENS Lyon, UMPA, UMR 5669, 46 Alle Italie, F-69364 Lyon 07, France
[2] Univ Versailles St Quentin, LMV UMR 8100, F-78035 Versailles, France
关键词
Random matrices; unitary ensemble; orthogonal ensemble; bivariate Brownian bridge; subordination; WEAK-CONVERGENCE; STOCHASTIC-PROCESSES; SEQUENCES; ENTRIES;
D O I
10.1142/S2010326314500063
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let U be a Haar distributed matrix in U(n) or O(n). In a previous paper, we proved that after centering, the two-parameter process T-(n)(s, t) = Sigma(i <= left perpendicular ns right perpendicular,j <= left perpendicular nt right perpendicular) vertical bar U-ij vertical bar(2), s, t is an element of[0, 1] converges in distribution to the bivariate tied-down Brownian bridge. In the present paper, we replace the deterministic truncation of U by a random one, in which each row (respectively, column) is chosen with probability s (respectively, t) independently. We prove that the corresponding two-parameter process, after centering and normalization by n(-1/2) converges to a Gaussian process. On the way we meet other interesting convergences.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] On the eigenvalues of truncations of random unitary matrices
    Meckes, Elizabeth
    Stewart, Kathryn
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2019, 24
  • [2] TRUNCATIONS OF HAAR DISTRIBUTED MATRICES, TRACES AND BIVARIATE BROWNIAN BRIDGES
    Donati-Martin, Catherine
    Rouault, Alain
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2012, 1 (01)
  • [3] Characteristic polynomials of random truncations: Moments, duality and asymptotics
    Serebryakov, Alexander
    Simm, Nick
    Dubach, Guillaume
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2023, 12 (01)
  • [4] LOCAL LAWS FOR MULTIPLICATION OF RANDOM MATRICES
    Ding, Xiucai
    Ji, Hong Chang
    ANNALS OF APPLIED PROBABILITY, 2023, 33 (04) : 2981 - 3009
  • [5] SUBORDINATION FOR THE SUM OF TWO RANDOM MATRICES
    Kargin, V.
    ANNALS OF PROBABILITY, 2015, 43 (04) : 2119 - 2150
  • [6] Random antagonistic matrices
    Cicuta, Giovanni M.
    Molinari, Luca Guido
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (37)
  • [7] Level crossing in random matrices. II. Random perturbation of a random matrix
    Grosfjeld, Tobias
    Shapiro, Boris
    Zarembo, Konstantin
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (21)
  • [8] Graph connection Laplacian and random matrices with random blocks (sic)
    El Karoui, Noureddine
    Wu, Hau-Tieng
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2015, 4 (01) : 1 - 42
  • [9] Random matrices with exchangeable entries
    Kirsch, Werner
    Kriecherbauer, Thomas
    REVIEWS IN MATHEMATICAL PHYSICS, 2020, 32 (07)
  • [10] The rank of sparse random matrices
    Coja-Oghlan, Amin
    Ergur, Alperen A.
    Gao, Pu
    Hetterich, Samuel
    Rolvien, Maurice
    RANDOM STRUCTURES & ALGORITHMS, 2023, 62 (01) : 68 - 130