Vanishing viscosity limits and boundary layers for circularly symmetric 2D flows

被引:61
作者
Lopes Filho, M. C. [1 ]
Mazzucato, A. L. [2 ]
Nussenzveig Lopes, H. J. [1 ]
Taylor, Michael [3 ]
机构
[1] Univ Estadual Campinas, IMECC, Dept Matemat, BR-13081970 Campinas, SP, Brazil
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[3] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
来源
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY | 2008年 / 39卷 / 04期
关键词
Navier-Stokes; boundary layer; vorticity;
D O I
10.1007/s00574-008-0001-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We continue the work of Lopes Filho, Mazzucato and Nussenzveig Lopes [10] on the vanishing viscosity limit of circularly symmetric viscous flow in a disk with rotating boundary, shown there to converge to the inviscid limit in L-2-norm as long as the prescribed angular velocity alpha(t) of the boundary has bounded total variation. Here we establish convergence in stronger L-2 and L-p-Sobolev spaces, allow for more singular angular velocities a, and address the issue of analyzing the behavior of the boundary layer. This includes an analysis of concentration of vorticity in the vanishing viscosity limit. We also consider such flows on an annulus, whose two boundary components rotate independently.
引用
收藏
页码:471 / 513
页数:43
相关论文
共 17 条
[1]   The zero-viscosity limit of the 2D Navier-Stokes equations [J].
Bona, JL ;
Wu, JH .
STUDIES IN APPLIED MATHEMATICS, 2002, 109 (04) :265-278
[2]  
FABES E, 1967, P S PURE MATH, V10, P82
[3]  
Fabes E. B., 1967, P S PURE MATH, P106
[4]  
FRIETZE S, 2006, INVISCID LIMIT INCOM
[5]   ASYMPTOTIC EXPANSION FOR HEAT EQUATION [J].
GREINER, P .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1971, 41 (03) :163-&
[6]  
KATO T., 1984, MATH SCI RES I PUBL, P85
[7]  
KELLIHER JP, 2009, COMMUN MATH IN PRESS
[8]  
Lions J., 1972, Die Grundlehren der mathematischen Wissenschaften, V181
[9]   Asymptotic analysis of the linearized Navier-Stokes equation on an exterior circular domain: Explicit solution and the zero viscosity limit [J].
Lombardo, MC ;
Caflisch, RE ;
Sammartino, M .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (1-2) :335-354
[10]   Vanishing viscosity limit for incompressible flow inside a rotating circle [J].
Lopes Filho, M. C. ;
Mazzucato, A. L. ;
Lopes, H. J. Nussenzveig .
PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (10-12) :1324-1333