Memory state feedback control synthesis for linear systems with time delay via a finite number of linear matrix inequalities

被引:35
作者
Azuma, T
Ikeda, K
Kondo, T
Uchida, K
机构
[1] Waseda Univ, Dept Elect Elect & Comp Engn, Shinjuku Ku, Tokyo 1698555, Japan
[2] Kanazawa Univ, Dept Elect & Elect Engn, Kanazawa, Ishikawa 9208667, Japan
关键词
time-delay systems; state feedback control; linear matrix inequalities;
D O I
10.1016/S0045-7906(01)00057-X
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider a synthesis problem of delay-dependent memory state feedback control which stabilizes linear time-delay systems. First we derive conditions for stability analysis and controller synthesis in the form of infinite-dimensional (parameter-dependent) linear matrix inequalities (LMIs), while infinite dimensionality of the LMIs may lead to less conservative results, but makes the conditions difficult to use. Second we show a technique to reduce the infinite-dimensional LMIs to a finite number of LMIs. A numerical example is given to demonstrate out approach. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:217 / 228
页数:12
相关论文
共 16 条
[1]  
Azuma T., 2000, Automatisierungstechnik, V48, P199, DOI 10.1524/auto.2000.48.4.199
[2]  
Azuma T, 1997, P AMER CONTR CONF, P510, DOI 10.1109/ACC.1997.611851
[3]  
Boyd S., 1994, SIAM STUDIES APPL MA
[4]  
Dugard L., 1997, LECT NOTES CONTROL I, V228
[5]  
Gahinet P., 1995, LMI Control Toolbox
[6]  
Gu KQ, 1997, P AMER CONTR CONF, P505, DOI 10.1109/ACC.1997.611850
[7]  
Gu KQ, 1997, P AMER CONTR CONF, P3657, DOI 10.1109/ACC.1997.609506
[8]  
HALE J. K., 2013, Introduction to functional differential equations
[9]   H∞ disturbance attenuation for state delayed systems [J].
He, JB ;
Wang, QG ;
Lee, TH .
SYSTEMS & CONTROL LETTERS, 1998, 33 (02) :105-114
[10]  
IKEDA K, 2000, P ANN M IEEJ