Statistical mechanics analysis of the continuous number partitioning problem

被引:8
作者
Ferreira, FF [1 ]
Fontanari, JF [1 ]
机构
[1] Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil
来源
PHYSICA A | 1999年 / 269卷 / 01期
基金
巴西圣保罗研究基金会;
关键词
number partitioning; linear programming relaxation;
D O I
10.1016/S0378-4371(99)00079-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The number partitioning problem consists of partitioning a sequence of positive numbers {a(1),a(2),...,a(N)} into two disjoint sets, A and B, such that the absolute value of the difference of the sums of ai over the two sets is minimized. We use statistical mechanics tools to study analytically the linear programming relaxation of this NP-complete integer programming. In particular, we calculate the probability distribution of the difference between the cardinalities of A and B and shaw that this difference is not self-averaging. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:54 / 60
页数:7
相关论文
共 9 条
[1]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[2]   Randomized methods for the number partitioning problem [J].
Arguello, MF ;
Feo, TA ;
Goldschmidt, O .
COMPUTERS & OPERATIONS RESEARCH, 1996, 23 (02) :103-111
[3]   Probabilistic analysis of the number partitioning problem [J].
Ferreira, FF ;
Fontanari, JF .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (15) :3417-3428
[4]   Statistical mechanics of the multi-constraint continuous knapsack problem [J].
Inoue, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (04) :1047-1058
[5]   OPTIMIZATION BY SIMULATED ANNEALING - AN EXPERIMENTAL EVALUATION .2. GRAPH-COLORING AND NUMBER PARTITIONING [J].
JOHNSON, DS ;
ARAGON, CR ;
MCGEOCH, LA ;
SCHEVON, C .
OPERATIONS RESEARCH, 1991, 39 (03) :378-406
[6]   PROBABILISTIC ANALYSIS OF OPTIMUM PARTITIONING [J].
KARMARKAR, N ;
KARP, RM ;
LUEKER, GS ;
ODLYZKO, AM .
JOURNAL OF APPLIED PROBABILITY, 1986, 23 (03) :626-645
[7]   Phase transition in the number partitioning problem [J].
Mertens, S .
PHYSICAL REVIEW LETTERS, 1998, 81 (20) :4281-4284
[8]  
MEZARD M, 1987, SPIN GLASS THEORY BE
[9]   The differencing algorithm LDM for partitioning: A proof of a conjecture of Karmarkar and Karp [J].
Yakir, B .
MATHEMATICS OF OPERATIONS RESEARCH, 1996, 21 (01) :85-99