An approximate gradient-descent method for joint parameter estimation and synchronization of coupled chaotic systems

被引:28
作者
Mariño, IP
Míguez, J
机构
[1] Univ Rey Juan Carlos, Dept Matemat & Fis Aplicadas & Ciencias Nat, Nonlinear Dynam & Chaos Grp, Madrid 28933, Spain
[2] Univ Carlos III Madrid, Dept Teor Senal & Comun, Madrid 28911, Spain
关键词
parameter estimation; chaos synchronization; chaos control;
D O I
10.1016/j.physleta.2005.11.005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We address the problem of estimating the unknown parameters of a primary chaotic system that produces an observed time series. These observations are used to drive a secondary system in a way that ensures synchronization when the two systems have identical parameters. We propose a new method to adaptively adjust the parameters in the secondary system until synchronization is achieved. It is based on the gradient-descent optimization of a suitably defined cost function and can be systematically applied to arbitrary systems. We illustrate its application by estimating the complete parameter vector of a Lorenz system. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:262 / 267
页数:6
相关论文
共 17 条
[1]   FITTING ORDINARY DIFFERENTIAL-EQUATIONS TO CHAOTIC DATA [J].
BAAKE, E ;
BAAKE, M ;
BOCK, HG ;
BRIGGS, KM .
PHYSICAL REVIEW A, 1992, 45 (08) :5524-5529
[2]   Designing a coupling that guarantees synchronization between identical chaotic systems [J].
Brown, R ;
Rulkov, NF .
PHYSICAL REVIEW LETTERS, 1997, 78 (22) :4189-4192
[3]   Parameter-adaptive identical synchronization disclosing Lorenz chaotic masking -: art. no. 046213 [J].
d'Anjou, A ;
Sarasola, C ;
Torrealdea, FJ ;
Orduna, R ;
Graña, M .
PHYSICAL REVIEW E, 2001, 63 (04)
[4]   Using geometric control and chaotic synchronization to estimate an unknown model parameter [J].
Freitas, US ;
Macau, EEN ;
Grebogi, C .
PHYSICAL REVIEW E, 2005, 71 (04)
[5]   Parameter estimation in spatially extended systems: The Karhunen-Loeve and Galerkin multiple shooting approach [J].
Ghosh, A ;
Kumar, VR ;
Kulkarni, BD .
PHYSICAL REVIEW E, 2001, 64 (05) :8-056222
[6]  
Huang DB, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.067201
[7]   Synchronization-based approach for estimating all model parameters of chaotic systems [J].
Konnur, R .
PHYSICAL REVIEW E, 2003, 67 (02) :4
[8]   Use of synchronization and adaptive control in parameter estimation from a time series [J].
Maybhate, A ;
Amritkar, RE .
PHYSICAL REVIEW E, 1999, 59 (01) :284-293
[9]   Estimating model parameters from time series by autosynchronization [J].
Parlitz, U .
PHYSICAL REVIEW LETTERS, 1996, 76 (08) :1232-1235
[10]   Synchronization-based parameter estimation from time series [J].
Parlitz, U ;
Junge, L ;
Kocarev, L .
PHYSICAL REVIEW E, 1996, 54 (06) :6253-6259