Differentiation of glioblastoma from solitary brain metastases using radiomic machine-learning classifiers

被引:141
作者
Qian, Zenghui [1 ]
Li, Yiming [2 ]
Wang, Yongzhi [3 ]
Li, Lianwang [3 ]
Li, Runting [3 ]
Wang, Kai [4 ]
Li, Shaowu [5 ]
Tang, Ke [6 ]
Zhang, Chuanbao [3 ]
Fan, Xing [2 ]
Chen, Baoshi [1 ]
Li, Wenbin [1 ]
机构
[1] Capital Med Univ, Beijing Tiantan Hosp, Neurosurg Ctr, Dept Neurooncol, Beijing, Peoples R China
[2] Capital Med Univ, Beijing Neurosurg Inst, Beijing, Peoples R China
[3] Capital Med Univ, Beijing Tiantan Hosp, Dept Neurosurg, Beijing, Peoples R China
[4] Capital Med Univ, Beijing Tiantan Hosp, Dept Nucl Med, Beijing, Peoples R China
[5] Capital Med Univ, Beijing Neurosurg Inst, Dept Neuroradiol, Beijing, Peoples R China
[6] 309th Hosp Chinese Peoples Liberat Army, Dept Neurosurg, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Brain metastases; Glioblastoma; Radiomics; Machine learning; MULTIFORME; DIAGNOSIS; GLIOMAS; DISCRIMINATION; RADIOGENOMICS; STRATEGY; FEATURES; SYSTEM; IMAGES; TUMORS;
D O I
10.1016/j.canlet.2019.02.054
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
This study aimed to identify the optimal radiomic machine-learning classifier for differentiating glioblastoma (GBM) from solitary brain metastases (MET) preoperatively. Four hundred and twelve patients with solitary brain tumors (242 GBM and 170 solitary brain MET) were divided into training (n = 227) and test (n = 185) cohorts. Radiomic features extraction was performed with PyRadiomics software. In the training cohort, twelve feature selection methods and seven classification methods were evaluated to construct favorable radiomic machine-learning classifiers. The performance of the classifiers was evaluated using the mean area under the curve (AUC) and relative standard deviation in percentile (RSD). In the training cohort, thirteen classifiers had favorable predictive performances (AUC >= 0.95 and RSD <= 6). In the test cohort, receiver operating characteristic (ROC) curve analysis revealed that support vector machines (SVM) + least absolute shrinkage and selection operator (LASSO) (AUC, 0.90) classifiers had the highest prediction efficacy. Furthermore, the clinical performance of the best classifier was superior to neuroradiologists in accuracy, sensitivity, and specificity. In conclusion, employing radiomic machine-learning technology could help neuroradiologist in differentiating GBM from solitary brain MET preoperatively.
引用
收藏
页码:128 / 135
页数:8
相关论文
共 38 条
[1]   Machine learning for neuroirnaging with scikit-learn [J].
Abraham, Alexandre ;
Pedregosa, Fabian ;
Eickenberg, Michael ;
Gervais, Philippe ;
Mueller, Andreas ;
Kossaifi, Jean ;
Gramfort, Alexandre ;
Thirion, Bertrand ;
Varoquaux, Gael .
FRONTIERS IN NEUROINFORMATICS, 2014, 8
[2]   The Potential of Radiomic-Based Phenotyping in PrecisionMedicine A Review [J].
Aerts, Hugo J. W. L. .
JAMA ONCOLOGY, 2016, 2 (12) :1636-1642
[3]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[4]   Intraaxial brain masses: MR imaging-based diagnostic strategy - Initial experience [J].
Al-Okaili, Riyadh N. ;
Krejza, Jaroslaw ;
Woo, John H. ;
Wolf, Ronald L. ;
O'Rourke, Donald M. ;
Judy, Kevin D. ;
Poptani, Harish ;
Melhem, Elias R. .
RADIOLOGY, 2007, 243 (02) :539-550
[5]   Radiogenomics - current status, challenges and future directions [J].
Andreassen, Christian Nicolaj ;
Schack, Line Meinertz Hybel ;
Laursen, Louise Vagner ;
Alsner, Jan .
CANCER LETTERS, 2016, 382 (01) :127-136
[6]   Differentiation of glioblastoma multiforme and single brain metastasis by peak height and percentage of signal intensity recovery derived from dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging [J].
Cha, S. ;
Lupo, J. M. ;
Chen, M.-H. ;
Lamborn, K. R. ;
McDermott, M. W. ;
Berger, M. S. ;
Nelson, S. J. ;
Dillon, W. P. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2007, 28 (06) :1078-1084
[7]   Differentiation between Brain Glioblastoma Multiforme and Solitary Metastasis: Qualitative and Quantitative Analysis Based on Routine MR Imaging [J].
Chen, X. Z. ;
Yin, X. M. ;
Ai, L. ;
Chen, Q. ;
Li, S. W. ;
Dai, J. P. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2012, 33 (10) :1907-1912
[8]   On demand Gamma-Knife strategy can be safely combined with BRAF inhibitors for the treatment of melanoma brain metastases [J].
Gaudy-Marqueste, C. ;
Carron, R. ;
Delsanti, C. ;
Loundou, A. ;
Monestier, S. ;
Archier, E. ;
Richard, M. A. ;
Regis, J. ;
Grob, J. J. .
ANNALS OF ONCOLOGY, 2014, 25 (10) :2086-2091
[9]   Enhancing the discrimination accuracy between metastases, gliomas and meningiomas on brain MRI by volumetric textural features and ensemble pattern recognition methods [J].
Georgiadis, Pantelis ;
Cavouras, Dionisis ;
Kalatzis, Ioannis ;
Glotsos, Dimitris ;
Athanasiadis, Emmanouil ;
Kostopoulos, Spiros ;
Sifaki, Koralia ;
Malamas, Menelaos ;
Nikiforidis, George ;
Solomou, Ekaterini .
MAGNETIC RESONANCE IMAGING, 2009, 27 (01) :120-130
[10]   Glioblastoma Multiforme: Exploratory Radiogenomic Analysis by Using Quantitative Image Features [J].
Gevaert, Olivier ;
Mitchell, Lex A. ;
Achrol, Achal S. ;
Xu, Jiajing ;
Echegaray, Sebastian ;
Steinberg, Gary K. ;
Cheshier, Samuel H. ;
Napel, Sandy ;
Zaharchuk, Greg ;
Plevritis, Sylvia K. .
RADIOLOGY, 2014, 273 (01) :168-174