Strong-disorder renormalization group study of aperiodic quantum Ising chains

被引:4
作者
Oliveira Filho, Fleury J. [1 ]
Faria, Maicon S. [1 ]
Vieira, Andre P. [1 ]
机构
[1] Inst Fis USP, BR-05314970 Sao Paulo, Brazil
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2012年
基金
巴西圣保罗研究基金会;
关键词
disordered systems (theory); spin chains; ladders and planes (theory); critical exponents and amplitudes (theory); renormalization group; CRITICAL-BEHAVIOR; STATISTICAL-MECHANICS; MODEL; SYSTEMS;
D O I
10.1088/1742-5468/2012/03/P03007
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We employ an adaptation of a strong-disorder renormalization group technique in order to analyze the ferro-paramagnetic quantum phase transition of Ising chains with aperiodic but deterministic couplings under the action of a transverse field. In the presence of marginal or relevant geometric fluctuations induced by aperiodicity, for which the critical behavior is expected to depart from the Onsager universality class, we derive analytical and asymptotically exact expressions for various critical exponents (including the correlation length and the magnetization exponents, which are not easily obtainable by other methods), and shed light onto the nature of the ground-state structures in the neighborhood of the critical point. The main results obtained by this approach are confirmed by finite-size scaling analyses of numerical calculations based on the free-fermion method.
引用
收藏
页数:32
相关论文
共 37 条
[1]   STATISTICAL MECHANICS OF XY-MODEL .2. SPIN-CORRELATION FUNCTIONS [J].
BAROUCH, E ;
MCCOY, BM .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1971, 3 (02) :786-+
[2]   UNIVERSAL ORDER-PARAMETER PROFILES IN CONFINED CRITICAL SYSTEMS WITH BOUNDARY FIELDS [J].
BURKHARDT, TW ;
EISENRIEGLER, E .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (02) :L83-L88
[3]   FINITE-SIZE SCALING AND CORRELATION LENGTHS FOR DISORDERED-SYSTEMS [J].
CHAYES, JT ;
CHAYES, L ;
FISHER, DS ;
SPENCER, T .
PHYSICAL REVIEW LETTERS, 1986, 57 (24) :2999-3002
[4]   LOW-TEMPERATURE PROPERTIES OF THE RANDOM HEISENBERG ANTI-FERROMAGNETIC CHAIN [J].
DASGUPTA, C ;
MA, S .
PHYSICAL REVIEW B, 1980, 22 (03) :1305-1319
[5]  
de Oliveira Filho FJ, 2011, THESIS U SAO PAULO
[6]   Phase transitions and singularities in random quantum systems [J].
Fisher, DS .
PHYSICA A, 1999, 263 (1-4) :222-233
[7]   RANDOM ANTIFERROMAGNETIC QUANTUM SPIN CHAINS [J].
FISHER, DS .
PHYSICAL REVIEW B, 1994, 50 (06) :3799-3821
[8]   RANDOM TRANSVERSE FIELD ISING SPIN CHAINS [J].
FISHER, DS .
PHYSICAL REVIEW LETTERS, 1992, 69 (03) :534-537
[9]   CRITICAL-BEHAVIOR OF RANDOM TRANSVERSE-FIELD ISING SPIN CHAINS [J].
FISHER, DS .
PHYSICAL REVIEW B, 1995, 51 (10) :6411-6461
[10]   NONANALYTIC BEHAVIOR ABOVE CRITICAL POINT IN A RANDOM ISING FERROMAGNET [J].
GRIFFITHS, RB .
PHYSICAL REVIEW LETTERS, 1969, 23 (01) :17-+