Partially linear models with first-order autoregressive symmetric errors

被引:21
作者
Relvas, Carlos Eduardo M. [1 ]
Paula, Gilberto A. [1 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Autoregressive errors; Local influence; Natural cubic splines; Residual analysis; Robust estimation; Student-t models; ADDITIVE-MODELS; DIAGNOSTICS;
D O I
10.1007/s00362-015-0680-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we discuss estimation and diagnostic procedures for partially linear models with first-order autoregressive [AR(1)] symmetric errors. The symmetric class includes all symmetric continuous distributions, particularly distributions with heavier and lighter tails than the normal ones, such as Student-t, power exponential and logistic, among others. Estimation is performed by maximum penalized likelihood and by using natural cubic splines. We derive the penalized score functions and the penalized Fisher information matrices for the parameters in the model. A reweighted iterative process based on the back-fitting algorithm is derived for the parameter estimation and the inference is based on the penalized Fisher information matrix. We discuss the effective degrees of freedom estimation and procedures for selecting the smoothing parameter. A small simulation study is performed for assessing the empirical distribution of the parameter estimates obtained from partially linear models with AR(1) errors. Residual analysis and derivation of conformal normal curvatures of local influence for some perturbation schemes are also given. Finally, a real data set is analyzed under partially linear models with AR(1) symmetric errors.
引用
收藏
页码:795 / 825
页数:31
相关论文
共 26 条
[1]  
[Anonymous], 1996, Applied Linear Regression Models
[2]  
[Anonymous], 1994, Nonparametric Regression and Generalized Linear Models: A Roughness Penalty
[3]   Heteroscedasticity and/or autocorrelation diagnostics in nonlinear models with AR(1) and symmetrical errors [J].
Cao, Chun-Zheng ;
Lin, Jin-Guan ;
Zhu, Li-Xing .
STATISTICAL PAPERS, 2010, 51 (04) :813-836
[4]  
COOK RD, 1986, J ROY STAT SOC B MET, V48, P133
[5]   Corrected maximum likelihood estimators in heteroscedastic symmetric nonlinear models [J].
Cysneiros, F. J. A. ;
Cordeiro, G. M. ;
Cysneiros, A. H. M. A. .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2010, 80 (04) :451-461
[6]   Restricted methods in symmetrical linear regression models [J].
Cysneiros, FJA ;
Paula, GA .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2005, 49 (03) :689-708
[7]   Heteroscedastic symmetrical linear models [J].
Cysneiros, Francisco Jose A. ;
Paula, Gilberto A. ;
Galea, Manuel .
STATISTICS & PROBABILITY LETTERS, 2007, 77 (11) :1084-1090
[8]  
Fang KT., 1990, Symmetric Multivariate and Related Distributions
[9]   On diagnostics in symmetrical nonlinear models [J].
Galea, M ;
Paula, GA ;
Cysneiros, FJA .
STATISTICS & PROBABILITY LETTERS, 2005, 73 (04) :459-467
[10]  
Greene WH., 2012, ECONOMETRIC ANAL