Negative thermal expansion near two structural quantum phase transitions

被引:14
作者
Occhialini, Connor A. [1 ]
Handunkanda, Sahan U. [1 ,2 ]
Said, Ayman [3 ]
Trivedi, Sudhir [4 ]
Guzman-Verri, G. G. [5 ,6 ,7 ]
Hancock, Jason N. [1 ,2 ]
机构
[1] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA
[2] Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA
[3] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
[4] Brimrose Technol Corp, Sparks, MD 21152 USA
[5] Univ Costa Rica, Ctr Invest Ciencia & Ingn Mat, San Jose 11501, Costa Rica
[6] Univ Costa Rica, Escuela Fis, San Jose 11501, Costa Rica
[7] Argonne Natl Lab, Mat Sci Div, Argonne, IL 60439 USA
来源
PHYSICAL REVIEW MATERIALS | 2017年 / 1卷 / 07期
基金
美国国家科学基金会;
关键词
SINGLE-COMPONENT SYSTEMS; CRYSTAL-STRUCTURE; RAMAN-SCATTERING; SOFT MODE; HG2CL2; NEUTRON; HALIDES;
D O I
10.1103/PhysRevMaterials.1.070603
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recent experimental work has revealed that the unusually strong, isotropic structural negative thermal expansion in cubic perovskite ionic insulator ScF3 occurs in excited states above a ground state tuned very near a structural quantum phase transition, posing a question of fundamental interest as to whether this special circumstance is related to the anomalous behavior. To test this hypothesis, we report an elastic and inelastic x-ray scattering study of a second system Hg2I2 also tuned near a structural quantum phase transition while retaining stoichiometric composition and high crystallinity. We find similar behavior and significant negative thermal expansion below 100 K for dimensions along the body-centered-tetragonal c axis, bolstering the connection between negative thermal expansion and zero-temperature structural transitions. We identify the common traits between these systems and propose a set of materials design principles that can guide discovery of new materials exhibiting negative thermal expansion.
引用
收藏
页数:6
相关论文
共 61 条
  • [1] Growth of high quality mercurous halide single crystals by physical vapor transport method for AOM and radiation detection applications
    Amarasinghe, Priyanthi M.
    Kim, Joo-Soo
    Chen, Henry
    Trivedi, Sudhir
    Qadri, Syed B.
    Soos, Jolanta
    Diestler, Mark
    Zhang, Dajie
    Gupta, Neelam
    Jensen, Janet L.
    Jensen, James
    [J]. JOURNAL OF CRYSTAL GROWTH, 2016, 450 : 96 - 102
  • [2] Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer
    Azuma, Masaki
    Chen, Wei-tin
    Seki, Hayato
    Czapski, Michal
    Olga, Smirnova
    Oka, Kengo
    Mizumaki, Masaichiro
    Watanuki, Tetsu
    Ishimatsu, Naoki
    Kawamura, Naomi
    Ishiwata, Shintaro
    Tucker, Matthew G.
    Shimakawa, Yuichi
    Attfield, J. Paul
    [J]. NATURE COMMUNICATIONS, 2011, 2
  • [3] Negative thermal expansion
    Barrera, GD
    Bruno, JAO
    Barron, THK
    Allan, NL
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (04) : R217 - R252
  • [4] BARTA C, 1975, JETP LETT+, V21, P54
  • [5] Materials with negative compressibilities in one or more dimensions
    Baughman, RH
    Stafström, S
    Cui, CX
    Dantas, SO
    [J]. SCIENCE, 1998, 279 (5356) : 1522 - 1524
  • [6] New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design
    Belsky, A
    Hellenbrandt, M
    Karen, VL
    Luksch, P
    [J]. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 2002, 58 : 364 - 369
  • [7] NEUTRON AND RAMAN-SCATTERING STUDIES IN HG2C12
    BENOIT, JP
    HAURET, G
    LUSPIN, Y
    AN, CX
    LEFEBVRE, J
    [J]. FERROELECTRICS, 1980, 25 (1-4) : 569 - 572
  • [8] FERROELASTIC PHASE-TRANSITION IN UNIVALENT MERCURY HALIDES IN VICINITY OF TRICRITICAL POINT
    BOIKO, ME
    MARKOV, YF
    VIKHNIN, VS
    YURKOV, AS
    ZADOKHIN, BS
    [J]. FERROELECTRICS, 1992, 130 (04) : 263 - 283
  • [9] Local Vibrations and Negative Thermal Expansion in ZrW2O8
    Bridges, F.
    Keiber, T.
    Juhas, P.
    Billinge, S. J. L.
    Sutton, L.
    Wilde, J.
    Kowach, Glen R.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (04)