Excitonic couplings and Stark effect in individual quantum dot molecules

被引:11
作者
de la Giroday, A. Boyer [1 ,2 ]
Skoeld, N. [1 ]
Farrer, I. [2 ]
Ritchie, D. A. [2 ]
Shields, A. J. [1 ]
机构
[1] Toshiba Res Europe Ltd, Cambridge Res Lab, Cambridge CB4 0GZ, England
[2] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1063/1.3652766
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present a comprehensive study of electric field effects upon the photoluminescence of individual quantum dot molecules. Using p-i-n diode structures, we are able to observe neutral, negatively and positively charged excitons, and biexcitons in a single device. Each molecule shows an extremely rich line structure which can be accurately described with a simple model. Moreover, reversing the doping sequence allows both electron and hole coupling between the dots to be investigated. High potential barriers cladding the quantum dot molecule allow the application of strong electric fields, resulting in a larger than expected quantum confined Stark effect. (C) 2011 American Institute of Physics. [doi:10.1063/1.3652766]
引用
收藏
页数:6
相关论文
共 20 条
[1]   Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots -: art. no. 195315 [J].
Bayer, M ;
Ortner, G ;
Stern, O ;
Kuther, A ;
Gorbunov, AA ;
Forchel, A ;
Hawrylak, P ;
Fafard, S ;
Hinzer, K ;
Reinecke, TL ;
Walck, SN ;
Reithmaier, JP ;
Klopf, F ;
Schäfer, F .
PHYSICAL REVIEW B, 2002, 65 (19) :1953151-19531523
[2]   Coupling and entangling of quantum states in quantum dot molecules [J].
Bayer, M ;
Hawrylak, P ;
Hinzer, K ;
Fafard, S ;
Korkusinski, M ;
Wasilewski, ZR ;
Stern, O ;
Forchel, A .
SCIENCE, 2001, 291 (5503) :451-453
[3]   Giant Stark effect in the emission of single semiconductor quantum dots [J].
Bennett, Anthony J. ;
Patel, Raj B. ;
Skiba-Szymanska, Joanna ;
Nicoll, Christine A. ;
Farrer, Ian ;
Ritchie, David A. ;
Shields, Andrew J. .
APPLIED PHYSICS LETTERS, 2010, 97 (03)
[4]   Engineering electron and hole tunneling with asymmetric InAs quantum dot molecules [J].
Bracker, A. S. ;
Scheibner, M. ;
Doty, M. F. ;
Stinaff, E. A. ;
Ponomarev, I. V. ;
Kim, J. C. ;
Whitman, L. J. ;
Reinecke, T. L. ;
Gammon, D. .
APPLIED PHYSICS LETTERS, 2006, 89 (23)
[5]   Exciton-Spin Memory with a Semiconductor Quantum Dot Molecule [J].
de la Giroday, A. Boyer ;
Skoeld, N. ;
Stevenson, R. M. ;
Farrer, I. ;
Ritchie, D. A. ;
Shields, A. J. .
PHYSICAL REVIEW LETTERS, 2011, 106 (21)
[6]   Morphology response to strain field interferences in stacks of highly ordered quantum dot arrays -: art. no. 196103 [J].
Heidemeyer, H ;
Denker, U ;
Müller, C ;
Schmidt, OG .
PHYSICAL REVIEW LETTERS, 2003, 91 (19)
[7]  
Henneberger F, 2008, SEMICONDUCTOR QUANTUM BITS, P1, DOI 10.1142/9789814241199
[8]   Competition between strain-induced and temperature-controlled nucleation of InAs/GaAs quantum dots [J].
Howe, P ;
Le Ru, EC ;
Clarke, E ;
Abbey, B ;
Murray, R ;
Jones, TS .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (06) :2998-3004
[9]   Ultrafast optical control of entanglement between two quantum-dot spins [J].
Kim, Danny ;
Carter, Samuel G. ;
Greilich, Alex ;
Bracker, Allan S. ;
Gammon, Daniel .
NATURE PHYSICS, 2011, 7 (03) :223-229
[10]   Control and detection of singlet-triplet mixing in a random nuclear field [J].
Koppens, FHL ;
Folk, JA ;
Elzerman, JM ;
Hanson, R ;
van Beveren, LHW ;
Vink, IT ;
Tranitz, HP ;
Wegscheider, W ;
Kouwenhoven, LP ;
Vandersypen, LMK .
SCIENCE, 2005, 309 (5739) :1346-1350