Silicon/Biogas-Derived Carbon Nanofibers Composites for Anodes of Lithium-Ion Batteries

被引:2
作者
Camean, Ignacio [1 ]
Cuesta, Nuria [1 ]
Ramos, Alberto [2 ]
Garcia, Ana B. [1 ]
机构
[1] INCAR CSIC, Inst Ciencia & Tecnol Carbono, Francisco Pintado Fe 26, Oviedo 33011, Spain
[2] Univ Castilla La Mancha, Ciudad Real 13071, Spain
来源
C-JOURNAL OF CARBON RESEARCH | 2020年 / 6卷 / 02期
关键词
silicon; biogas-derived carbon nanofibers; anodes; lithium-ion batteries; HIGH-CAPACITY ANODES; NEGATIVE ELECTRODES; SI ANODE; LI; BINDER; PERFORMANCE; NANOWIRES; CELLULOSE; PROGRESS;
D O I
10.3390/c6020025
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The electrochemical performance of novel nano-silicon/biogas-derived carbon nanofibers composites (nSi/BCNFs) as anodes in lithium-ion batteries was investigated, focusing on composition and galvanostatic cycling conditions. The optimization of these variables contributes to reduce the stress associated with siliconlithiation/delithiationby accommodating/controlling the volume changes, thus preventing anode degradation and therefore improving its performance regarding capacity and stability. Specific capacities up to 520 mAh g(-1) with coulombic efficiency > 95% and 94% of capacity retention are achieved for nSi/BCNFs anodes at electric current density of 100/200 mA g(-1) and low cutoff voltage of 80 mV. Among the BCNFs, those no-graphitized with fishbone microstructure, which have a great number of active sites to interact with nSi particles, are the best carbon matrices. Specifically, a nSi:BCNFs 1:1 weight ratio in the composite is the optimal, since it allows a compromise between a suitable specific capacity, which is higher than that of graphitic materials currently commercialized for LIBs, and an acceptable capacity retention along cycling. Low cutoff voltage in the 80-100 mV range is the most suitable for the cycling of nSi/BCNFs anodes because it avoids formation of the highestlithiatedphase (Li15Si4) and therefore the complete siliconlithiation, which leads to electrode damage.
引用
收藏
页数:14
相关论文
共 40 条
[1]   Si electrodes for li-ion batteries - A new way to look at an old problem [J].
Beattie, S. D. ;
Larcher, D. ;
Morcrette, M. ;
Simon, B. ;
Tarascon, J. -M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (02) :A158-A163
[2]   Key Parameters Governing the Reversibility of Si/Carbon/CMC Electrodes for Li-Ion Batteries [J].
Bridel, J. -S. ;
Azais, T. ;
Morcrette, M. ;
Tarascon, J. -M. ;
Larcher, D. .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :1229-1241
[3]   Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries [J].
Buqa, H. ;
Holzapfel, M. ;
Krumeich, F. ;
Veit, C. ;
Novak, P. .
JOURNAL OF POWER SOURCES, 2006, 161 (01) :617-622
[4]   Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation [J].
Casimir, Anix ;
Zhang, Hanguang ;
Ogoke, Ogechi ;
Amine, Joseph C. ;
Lu, Jun ;
Wu, Gang .
NANO ENERGY, 2016, 27 :359-376
[5]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[6]   Graphitic nanomaterials from biogas-derived carbon nanofibers [J].
Cuesta, N. ;
Camean, I. ;
Ramos, A. ;
de Llobet, S. ;
Garcia, A. B. .
FUEL PROCESSING TECHNOLOGY, 2016, 152 :1-6
[7]   Graphitized biogas-derived carbon nanofibers as anodes for lithium-ion batteries [J].
Cuesta, Nuria ;
Camean, Ignacio ;
Ramos, Alberto ;
Garcia, Ana B. .
ELECTROCHIMICA ACTA, 2016, 222 :264-270
[8]   Crystalline-Amorphous Core-Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes [J].
Cui, Li-Feng ;
Ruffo, Riccardo ;
Chan, Candace K. ;
Peng, Hailin ;
Cui, Yi .
NANO LETTERS, 2009, 9 (01) :491-495
[9]   A polymer scaffold binder structure for high capacity silicon anode of lithium-ion battery [J].
Guo, Juchen ;
Wang, Chunsheng .
CHEMICAL COMMUNICATIONS, 2010, 46 (09) :1428-1430
[10]   Silicon/graphite composite electrodes for high-capacity anodes:: Influence of binder chemistry on cycling stability [J].
Hochgatterer, N. S. ;
Schweiger, M. R. ;
Koller, S. ;
Raimann, P. R. ;
Woehrle, T. ;
Wurm, C. ;
Winter, M. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (05) :A76-A80