Retrieval of aerosol backscatter, extinction, and lidar ratio from Raman lidar with optimal estimation

被引:19
作者
Povey, A. C. [1 ]
Grainger, R. G. [1 ]
Peters, D. M. [1 ]
Agnew, J. L. [2 ]
机构
[1] Univ Oxford, Oxford OX1 3PU, England
[2] STFC Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England
关键词
OPTICAL-PROPERTIES; INVERSION; PROFILES; CLOUDS; LAYER; REGULARIZATION; COEFFICIENT; PARAMETERS; ALGORITHM; RADIATION;
D O I
10.5194/amt-7-757-2014
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Optimal estimation retrieval is a form of nonlinear regression which determines the most probable circumstances that produced a given observation, weighted against any prior knowledge of the system. This paper applies the technique to the estimation of aerosol backscatter and extinction (or lidar ratio) from two-channel Raman lidar observations. It produces results from simulated and real data consistent with existing Raman lidar analyses and additionally returns a more rigorous estimate of its uncertainties while automatically selecting an appropriate resolution without the imposition of artificial constraints. Backscatter is retrieved at the instrument's native resolution with an uncertainty between 2 and 20%. Extinction is less well constrained, retrieved at a resolution of 0.1-1 km depending on the quality of the data. The uncertainty in extinction is > 15%, in part due to the consideration of short 1 min integrations, but is comparable to fair estimates of the error when using the standard Raman lidar technique. The retrieval is then applied to several hours of observation on 19 April 2010 of ash from the Eyjafjallajokull eruption. A depolarising ash layer is found with a lidar ratio of 20-30 sr, much lower values than observed by previous studies. This potentially indicates a growth of the particles after 12-24 h within the planetary boundary layer. A lower concentration of ash within a residual layer exhibited a backscatter of 10 Mm(-1) sr(-1) and lidar ratio of 40 sr.
引用
收藏
页码:757 / 776
页数:20
相关论文
共 72 条
[1]  
Agnew J, 2003, SIXTH INTERNATIONAL SYMPOSIUM ON TROPOSPHERIC PROFILING: NEEDS AND TECHNOLOGIES, P151
[2]  
Agnew J., 2006, CHILBOLTON UV RAMAN
[3]  
Althausen D, 2000, J ATMOS OCEAN TECH, V17, P1469, DOI 10.1175/1520-0426(2000)017<1469:SWCAL>2.0.CO
[4]  
2
[5]  
[Anonymous], 1987, BOUNDARY LAYER CLIMA
[6]  
[Anonymous], 2000, INVERSE METHODS ATMO
[7]   INDEPENDENT MEASUREMENT OF EXTINCTION AND BACKSCATTER PROFILES IN CIRRUS CLOUDS BY USING A COMBINED RAMAN ELASTIC-BACKSCATTER LIDAR [J].
ANSMANN, A ;
WANDINGER, U ;
RIEBESELL, M ;
WEITKAMP, C ;
MICHAELIS, W .
APPLIED OPTICS, 1992, 31 (33) :7113-7131
[8]   The 16 April 2010 major volcanic ash plume over central Europe: EARLINET lidar and AERONET photometer observations at Leipzig and Munich, Germany [J].
Ansmann, A. ;
Tesche, M. ;
Gross, S. ;
Freudenthaler, V. ;
Seifert, P. ;
Hiebsch, A. ;
Schmidt, J. ;
Wandinger, U. ;
Mattis, I. ;
Mueller, D. ;
Wiegner, M. .
GEOPHYSICAL RESEARCH LETTERS, 2010, 37
[9]  
Colbeck Ian., 1998, Physical and chemical properties of aerosols
[10]   Evaluating the structure and magnitude of the ash plume during the initial phase of the 2010 Eyjafjallajokull eruption using lidar observations and NAME simulations [J].
Dacre, H. F. ;
Grant, A. L. M. ;
Hogan, R. J. ;
Belcher, S. E. ;
Thomson, D. J. ;
Devenish, B. J. ;
Marenco, F. ;
Hort, M. C. ;
Haywood, J. M. ;
Ansmann, A. ;
Mattis, I. ;
Clarisse, L. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116