On a fourth order elliptic problem with a p(x)-biharmonic operator

被引:27
作者
Kong, Lingju [1 ]
机构
[1] Univ Tennessee, Dept Math, Chattanooga, TN 37403 USA
关键词
Critical points; p(x)-biharmonic operator; Navier boundary conditions; Existence; Weak solutions; MULTIPLICITY; EXISTENCE;
D O I
10.1016/j.aml.2013.08.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Sufficient conditions are obtained for the existence of at least one nontrivial weak solution to a fourth order elliptic problem with a p(x)-biharmonic operator and the Navier boundary conditions. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:21 / 25
页数:5
相关论文
共 18 条
[1]  
[Anonymous], LECT NOTES MATH
[2]  
[Anonymous], 1987, Math. USSR, DOI DOI 10.1070/IM1987V029N01ABEH000958
[3]  
[Anonymous], Variational Methods
[4]  
[Anonymous], P AM MATH S IN PRESS
[5]   On the spectrum of a fourth order elliptic equation with variable exponent [J].
Ayoujil, A. ;
El Amrouss, A. R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4916-4926
[6]  
Ayoujil A, 2011, ELECTRON J DIFFER EQ
[7]   Estimates of the principal eigenvalue of the p-biharmonic operator [J].
Benedikt, Jiri ;
Drabek, Pavel .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (13) :5374-5379
[8]   Existence of solutions for a boundary problem involving p(x)-biharmonic operator [J].
El Amrouss, Abdel Rachid ;
Ourraoui, Anass .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2013, 31 (01) :179-192
[9]   Remarks on Ricceri's variational principle and applications to the p(x)-Laplacian equations [J].
Fan, Xianling ;
Deng, Shao-Gao .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (11) :3064-3075
[10]   On the spaces Lp(x)(Ω) and Wm, p(x)(Ω) [J].
Fan, XL ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (02) :424-446