Monte Carlo simulations of microgap gas-filled proportional counters

被引:1
作者
Kundu, A [1 ]
Morton, EJ [1 ]
Key, MJ [1 ]
Luggar, RD [1 ]
机构
[1] Univ Surrey, Sch Phys Sci, Dept Phys, Guildford GU2 5XH, Surrey, England
来源
RADIATION SOURCES AND RADIATION INTERACTIONS | 1999年 / 3771卷
关键词
Monte Carlo; microgap; argon; methane; non-linear effects;
D O I
10.1117/12.363695
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Monte Carlo calculations have been widely employed to model the interactions of electrons and photons as they travel through and collide with matter. This approach has been applied with some success to the problem of simulating the response of gas-filled proportional counters, mapping out electron transport through the electric field on an interaction-by-interaction basis. These studies focus on the multiplication of electrons as they drift into the high electric field region of the detector and subsequently avalanche. We are using this technique in our new simulation code to depict avalanching in microgap gas-filled proportional counters, in order to investigate the variation elf two principle detector properties with the anode pitch used in the detector. Spatial resolution information can be obtained by measuring the lateral diffusion distance of an electron from the point where it is liberated to the point in the detector where it initiates an avalanche. By also modeling the motion of the positive ions that are left behind fi om the initial avalanche, we are able to gauge the effect of space charge distortion on subsequent avalanches. This effect is particularly important at the high X-ray count rates that we are interested in for our ultimate aim, which is to use the detectors as part of a high-speed tomography system for imaging multiphase oil/water/gas flows.
引用
收藏
页码:90 / 97
页数:8
相关论文
共 13 条
[1]  
BELLOMO R, 1995, REN FAIL, V17, P1
[2]   OPTIMIZATION OF MONTE-CARLO CODES USING NULL COLLISION TECHNIQUES FOR EXPERIMENTAL SIMULATION AT LOW E/N [J].
BRENNAN, MJ .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 1991, 19 (02) :256-261
[3]   MEASUREMENTS OF SWARM PARAMETERS AND DERIVED ELECTRON COLLISION CROSS-SECTIONS IN METHANE [J].
DAVIES, DK ;
KLINE, LE ;
BIES, WE .
JOURNAL OF APPLIED PHYSICS, 1989, 65 (09) :3311-3323
[4]   ELECTRON-IMPACT CROSS-SECTIONS AND COOLING RATES FOR METHANE [J].
GAN, L ;
CRAVENS, TE .
PLANETARY AND SPACE SCIENCE, 1992, 40 (11) :1535-1544
[5]   TOTAL (ELASTIC PLUS INELASTIC) CROSS-SECTIONS FOR ELECTRON-SCATTERING WITH ARGON AND KRYPTON ATOMS AT ENERGIES 10-6000 EV [J].
JAIN, A ;
ETEMADI, B ;
KARIM, KR .
PHYSICA SCRIPTA, 1990, 41 (03) :321-328
[6]   Numerical simulation of argon-methane gas filled proportional counters [J].
Kundu, A ;
Morton, EJ .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1999, 422 (1-3) :286-290
[7]  
LUGGAR RD, 1999, IN PRESS SPIE 44 ANN
[8]   DIFFUSION TENSOR OF ELECTRON SWARM IN ELECTRIC-FIELD IN GASES .2. THE INFLUENCE OF THE CONSERVATIVE INELASTIC-COLLISIONS [J].
MAKABE, T ;
SHIMOYAMA, M .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1986, 19 (12) :2301-2308
[9]  
MORTON EJ, 1999, IN PRESS IEEE T NUCL
[10]   Energy resolution of xenon proportional counters: Monte Carlo simulation and experimental results [J].
Rachinhas, PJBM ;
Dias, THVT ;
Stauffer, AD ;
Santos, FP ;
Conde, CAN .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1996, 43 (04) :2399-2405