Note on third-order boundary value problem for differential equations with deviating arguments

被引:4
作者
Liu, B [1 ]
Yu, JS
机构
[1] Wuhan Univ, Coll Math & Stat, Wuhan 430072, Hubei, Peoples R China
[2] Hubei Normal Univ, Dept Math, Huangshi 435002, Hubei, Peoples R China
[3] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
boundary value problem; differential equations with deviating arguments; Leray-Schauder alternative; A priori bounds; existence and uniqueness theorems;
D O I
10.1016/S0893-9659(01)00146-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A third-order boundary value problem for differential equations with deviating arguments is considered in this note. An existence result is obtained by the help of the well-known Leray-Schauder Alternative. Also, a uniqueness result is given. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:371 / 379
页数:9
相关论文
共 5 条
[1]  
DUGUNDJI J, 1982, MONOGRAPHIE MATEMATY, V1
[2]  
NTOUYAS SK, 1995, FUNKCIAL EKVAC, V38, P59
[3]   EXISTENCE OF SOLUTIONS OF BOUNDARY-VALUE-PROBLEMS FOR DIFFERENTIAL-EQUATIONS WITH DEVIATING ARGUMENTS, VIA THE TOPOLOGICAL TRANSVERSALITY METHOD [J].
TSAMATOS, PC ;
NTOUYAS, SK .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1991, 118 :79-89
[4]   EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR BOUNDARY-VALUE-PROBLEMS FOR DIFFERENTIAL-EQUATIONS WITH DEVIATING ARGUMENTS [J].
TSAMATOS, PC ;
NTOUYAS, SK .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 22 (09) :1131-1146
[5]  
Tsamatos PC., 1995, BOUND VALUE PROBL, P277