Bismuth-based candidates for topological insulators: Chemistry beyond Bi2Te3

被引:38
作者
Isaeva, Anna [1 ]
Rasche, Bertold [1 ]
Ruck, Michael [1 ]
机构
[1] Tech Univ Dresden, Fac Sci, D-01069 Dresden, Germany
来源
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS | 2013年 / 7卷 / 1-2期
关键词
bismuth; decorated honeycomb net; heterostructures; topological insulators; X-RAY-DIFFRACTION; SINGLE DIRAC CONE; CRYSTAL-STRUCTURE; THERMOELECTRIC PROPERTIES; TRANSPORT-PROPERTIES; ELECTRONIC-STRUCTURE; LARGE MAGNETORESISTANCE; PHYSICAL-PROPERTIES; LAYERED COMPOUNDS; BITEI;
D O I
10.1002/pssr.201206405
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present contribution considers chemical aspects relevant for established and candidate topological insulators (TIs) based on the element bismuth. We provide an overview of selected bismuth-containing compounds with topological protection, place them among structurally related compounds and, proceeding from the comparison, propose further families and guidelines for the search of new candidate TIs. Owing to the unique electronic properties and structural flexibility, bismuth demonstrates an overwhelming diversity of structural motifs, including low-dimensional ones. Bismuth acts both as an electron donor and acceptor interacting with other elements, thus initiating a refined interplay of electron delocalization and localization that results in a wide range of properties - from an insulator or a semiconductor to a metal or a semimetal. Due to the bonding abilities of Bi 6p-orbitals an isolated pure-bismuth layer is bound to be corrugated. Yet compounds exist with planar decorated honeycomb nets of bismuth and transition-metal atoms that allow for testing theoretical predictions that nets with such geometry could support a TI phase. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:39 / 49
页数:11
相关论文
共 50 条
[41]   First-principles studies of the three-dimensional strong topological insulators Bi2Te3, Bi2Se3 and Sb2Te3 [J].
Zhang, Wei ;
Yu, Rui ;
Zhang, Hai-Jun ;
Dai, Xi ;
Fang, Zhong .
NEW JOURNAL OF PHYSICS, 2010, 12
[42]   Quasiparticle band gap in the topological insulator Bi2Te3 [J].
Nechaev, I. A. ;
Chulkov, E. V. .
PHYSICAL REVIEW B, 2013, 88 (16)
[43]   Interface-Dominated Topological Transport in Nanograined Bulk Bi2Te3 [J].
Izadi, Sepideh ;
Han, Jeong Woo ;
Salloum, Sarah ;
Wolff, Ulrike ;
Schnatmann, Lauritz ;
Asaithambi, Aswin ;
Matschy, Sebastian ;
Schloerb, Heike ;
Reith, Heiko ;
Perez, Nicolas ;
Nielsch, Kornelius ;
Schulz, Stephan ;
Mittendorff, Martin ;
Schierning, Gabi .
SMALL, 2021, 17 (42)
[44]   Crystal symmetry breaking in few-quintuple Bi2Te3 films: Applications in nanometrology of topological insulators [J].
Shahil, K. M. F. ;
Hossain, M. Z. ;
Teweldebrhan, D. ;
Balandin, A. A. .
APPLIED PHYSICS LETTERS, 2010, 96 (15)
[45]   Mn induced ferromagnetism and modulated topological surface states in Bi2Te3 [J].
Niu, Chengwang ;
Dai, Ying ;
Guo, Meng ;
Wei, Wei ;
Ma, Yandong ;
Huang, Baibiao .
APPLIED PHYSICS LETTERS, 2011, 98 (25)
[46]   Quasiparticle interference on the surface of the topological insulator Bi2Te3 [J].
Lee, Wei-Cheng ;
Wu, Congjun ;
Arovas, Daniel P. ;
Zhang, Shou-Cheng .
PHYSICAL REVIEW B, 2009, 80 (24)
[47]   Quantum electrical transport properties of topological insulator Bi2Te3 nanowires [J].
Kim, Hong-Seok ;
Shin, Ho Sun ;
Lee, Joon Sung ;
Ahn, Chi Won ;
Song, Jae Yong ;
Doh, Yong-Joo .
CURRENT APPLIED PHYSICS, 2016, 16 (01) :51-56
[48]   First-principles study of surface states in topological insulators Bi2Te3 and Bi2Se3: film thickness dependence [J].
Kato, Takehiro ;
Kotaka, Hiroki ;
Ishii, Fumiyuki .
MOLECULAR SIMULATION, 2015, 41 (10-12) :892-895
[49]   Crystal Symmetry Breaking in Few Quintuple Bi2Te3 Nanosheets: Applications in Nanometrology of Topological Insulators and Low-Temperature Thermoelectrics [J].
Srivastava, Punita ;
Kumar, Pushpendra ;
Singh, Kedar .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2014, 14 (08) :5856-5863
[50]   Bismuth amides as promising ALD precursors for Bi2Te3 films [J].
Rusek, Monika ;
Komossa, Tim ;
Bendt, Georg ;
Schulz, Stephan .
JOURNAL OF CRYSTAL GROWTH, 2017, 470 :128-134