Numerical simulation of local doped barrier layer AlGaN/GaN HEMTs

被引:11
作者
Fu, Wenli [1 ]
Xu, Yuehang [1 ]
Yan, Bo [1 ]
Zhang, Bin [2 ]
Xu, Ruimin [1 ]
机构
[1] Univ Elect Sci & Technol China, Fundamental Sci EHF Lab, Chengdu 611731, Peoples R China
[2] Nanjing Elect Devices Inst, Nanjing 210016, Jiangsu, Peoples R China
关键词
GaN; HEMT; 2DEG; Power density; PIEZOELECTRIC POLARIZATION; ELECTRON;
D O I
10.1016/j.spmi.2013.05.017
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
A GaN HEMT with local doped barrier layer is proposed in this paper. The DC and RF characteristics of the proposed GaN HEMT structure is analyzed by using 2D numerical simulation. The results show that the breakdown voltage is 23% larger than that of the entire doped barrier layer structure due to the extension of depletion layer width between gate and drain electrodes, which reduces the electric field peak value at the right corner of the gate. A theoretical maximum output power density of 16.2 W/mm has been achieved, which is similar to 34% larger than that of the entire doped barrier layer structure, and 7% larger than that of the unintentionally doped barrier layer structure. And the RF simulation results show that the proposed GaN HEMT also improved the maximum stable gain (MSG) by 0.8 dB up to 25 GHz due to the decrease of the gate-drain capacitance compared to the unintentionally doped and entire doped barrier layer structures. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:443 / 452
页数:10
相关论文
共 19 条
[11]   300-GHz InAlN/GaN HEMTs With InGaN Back Barrier [J].
Lee, Dong Seup ;
Gao, Xiang ;
Guo, Shiping ;
Kopp, David ;
Fay, Patrick ;
Palacios, Tomas .
IEEE ELECTRON DEVICE LETTERS, 2011, 32 (11) :1525-1527
[12]   Doping design of GaN-based heterostructure field-effect transistors with high electron density for high-power applications [J].
Maeda, N ;
Tawara, T ;
Saitoh, T ;
Tsubaki, K ;
Kobayashi, N .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2003, 200 (01) :168-174
[13]   55% PAE and high power Ka-band GaNHEMTs with linearized transconductance via n+ GaN source contact ledge [J].
Moon, J. S. ;
Wong, D. ;
Hu, M. ;
Hashimoto, P. ;
Antcliffe, M. ;
McGuire, C. ;
Micovic, M. ;
Willadson, P. .
IEEE ELECTRON DEVICE LETTERS, 2008, 29 (08) :834-837
[14]  
Raj G., 2012, SUPERLATTICES MICROS
[15]   AlGaN/AlN/GaN high-power microwave HEMT [J].
Shen, L ;
Heikman, S ;
Moran, B ;
Coffie, R ;
Zhang, NQ ;
Buttari, D ;
Smorchkova, IP ;
Keller, S ;
DenBaars, SP ;
Mishra, UK .
IEEE ELECTRON DEVICE LETTERS, 2001, 22 (10) :457-459
[16]  
Sze S. M, 2006, Semiconductor Devices: Physics and Technology
[17]  
Wu Y.-F., 2006, Device Research Conference (IEEE Cat. No. 06TH8896), P151
[18]  
Xu Y., 2010, INT C IEEE, P1606
[19]   Highly uniform sheet resistance of the double-channel AlInN/GaN heterostructure [J].
Zhang, S. ;
Yin, J. Y. ;
Feng, Z. H. ;
Li, M. C. ;
Wang, J. Z. ;
Zhao, L. C. .
SUPERLATTICES AND MICROSTRUCTURES, 2010, 48 (06) :523-528