Stable High-Pressure Methane Dry Reforming Under Excess of CO2

被引:27
作者
Ramirez, Adrian [1 ]
Lee, Kunho [2 ]
Harale, Aadesh [2 ]
Gevers, Lieven [1 ]
Telalovic, Selvedin [1 ]
Al Solami, Bandar [2 ]
Gascon, Jorge [1 ]
机构
[1] King Abdullah Univ Sci & Technol, KAUST Catalysis Ctr KCC Adv Catalyt Mat, Thuwal 23955, Saudi Arabia
[2] Saudi Aramco, Carbon Management Res Div, Ctr Res & Dev, Dhahran 31311, Saudi Arabia
关键词
Dry Reforming; CO2; CH4; Hydrogen; Syngas; Pressure; CATALYST; STEAM; CONVERSION; KEY; CH4;
D O I
10.1002/cctc.202001049
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Dry reforming of methane (DRM), the conversion of carbon dioxide and methane into syngas, offers great promise for the recycling of CO2. However, fast catalyst deactivation, especially at the industrially required high pressure, still hampers this process. Here we present a comprehensive study of DRM operation at high pressure (7-28 bars). Our results demonstrate that, under equimolar CH4 : CO(2)mixtures, coke formation is unavoidable at high pressures for all catalysts under study. However, under substoichiometric CH4 : CO(2)ratios (1 : 3), a stable high pressure operation can be achieved for most catalysts with no sign of deactivation for at least 60 hours at 14 bars, 800 degrees C and 7500 h(-1). In addition to the enhanced stability, under these conditions, the amount of CO(2)abated per mol of CH(4)fed increases by a 50 %.
引用
收藏
页码:5919 / 5925
页数:7
相关论文
共 36 条
[1]   Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes [J].
Alvarez, Andrea ;
Bansode, Atul ;
Urakawa, Atsushi ;
Bavykina, Anastasiya V. ;
Wezendonk, Tim A. ;
Makkee, Michiel ;
Gascon, Jorge ;
Kapteijn, Freek .
CHEMICAL REVIEWS, 2017, 117 (14) :9804-9838
[2]   Catalyst design for dry reforming of methane: Analysis review [J].
Aramouni, Nicolas Abdel Karim ;
Touma, Jad G. ;
Abu Tarboush, Belal ;
Zeaiter, Joseph ;
Ahmad, Mohammad N. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 82 :2570-2585
[3]   An overview on dry reforming of methane: strategies to reduce carbonaceous deactivation of catalysts [J].
Arora, Shalini ;
Prasad, R. .
RSC ADVANCES, 2016, 6 (110) :108668-108688
[4]   Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries [J].
Centi, Gabriele ;
Quadrelli, Elsje Alessandra ;
Perathoner, Siglinda .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (06) :1711-1731
[5]   Parametric study of catalytic dry reforming of methane for syngas production at elevated pressures [J].
Chein, R. Y. ;
Hsu, W. H. ;
Yu, C. T. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (21) :14485-14500
[6]   Thermodynamic analysis of dry reforming of CH4 with CO2 at high pressures [J].
Chein, R. Y. ;
Chen, Y. C. ;
Yu, C. T. ;
Chung, J. N. .
JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2015, 26 :617-629
[7]   Crowd oil not crude oil [J].
Dittmeyer, Roland ;
Klumpp, Michael ;
Kant, Paul ;
Ozin, Geoffrey .
NATURE COMMUNICATIONS, 2019, 10 (1)
[8]   Influence of active metal loading and oxygen mobility on coke-free dry reforming of Ni-Co bimetallic catalysts [J].
Djinovic, Petar ;
Crnivec, Ilja Gasan Osojnik ;
Erjavec, Bostjan ;
Pintar, Albin .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2012, 125 :259-270
[9]   Heterogeneous Catalysis for the Valorization of CO2: Role of Bifunctional Processes in the Production of Chemicals [J].
Dokania, Abhay ;
Ramirez, Adrian ;
Bavykina, Anastasiya ;
Gascon, Jorge .
ACS ENERGY LETTERS, 2019, 4 (01) :167-176
[10]   Production of synthetic gasoline and diesel fuel from dry reforming of methane [J].
Er-rbib, Hanaa ;
Bouallou, Chakib ;
Werkoff, Francois .
WHEC 2012 CONFERENCE PROCEEDINGS - 19TH WORLD HYDROGEN ENERGY CONFERENCE, 2012, 29 :156-165