Parametric finite elements, exact sequences and perfectly matched layers

被引:30
作者
Matuszyk, Pawel J. [1 ]
Demkowicz, Leszek F. [2 ]
机构
[1] AGH Univ Sci & Technol, Dept Appl Comp Sci & Modeling, Krakow, Poland
[2] Univ Texas Austin, ICES, Austin, TX 78712 USA
关键词
Exact sequence; Perfectly matched layer; Parametric element; ABSORBING BOUNDARY-CONDITION; ELECTROMAGNETIC-WAVES; MEDIA; ELASTODYNAMICS; DERIVATION;
D O I
10.1007/s00466-012-0702-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper establishes a relation between exact sequences, parametric finite elements, and perfectly matched layer (PML) techniques. We illuminate the analogy between the Piola-like maps used to define parametric H (1)-, H(curl)-, H(div)-, and L (2)-conforming elements, and the corresponding PML complex coordinates stretching for the same energy spaces. We deliver a method for obtaining PML-stretched bilinear forms (constituting the new weak formulation for the original problem with PML absorbing boundary layers) directly from their classical counterparts.
引用
收藏
页码:35 / 45
页数:11
相关论文
共 21 条
[1]   Stability of perfectly matched layers, group velocities and anisotropic waves [J].
Bécache, E ;
Fauqueux, S ;
Joly, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 188 (02) :399-433
[2]   A PERFECTLY MATCHED LAYER FOR THE ABSORPTION OF ELECTROMAGNETIC-WAVES [J].
BERENGER, JP .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 114 (02) :185-200
[3]   Perfectly matched layers for elastodynamics: A new absorbing boundary condition [J].
Chew, WC ;
Liu, QH .
JOURNAL OF COMPUTATIONAL ACOUSTICS, 1996, 4 (04) :341-359
[4]   A 3D PERFECTLY MATCHED MEDIUM FROM MODIFIED MAXWELLS EQUATIONS WITH STRETCHED COORDINATES [J].
CHEW, WC ;
WEEDON, WH .
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1994, 7 (13) :599-604
[5]  
Chew WC, 1997, IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM 1997, VOLS 1-4, P2060, DOI 10.1109/APS.1997.631834
[6]   The perfectly matched layer in curvilinear coordinates [J].
Collino, F ;
Monk, P .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (06) :2061-2090
[7]  
Demkowicz L., 2007, Computing with hp-Adaptive Finite Elements: Volume 2: Frontiers, V2
[8]  
Demkowicz L, 2007, LECT NOTES MATH, V1939, P101
[9]  
Demkowicz L., 2006, Computing with hp-Adaptive Finite Elements, One and Two Dimensional Elliptic and Maxwell Problems, V1
[10]   The Newmark scheme as velocity-stress time-staggering: an efficient PML implementation for spectral element simulations of elastodynamics [J].
Festa, G ;
Vilotte, JP .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2005, 161 (03) :789-812