Sodium Ion Batteries using Ionic Liquids as Electrolytes

被引:52
|
作者
Hagiwara, Rika [1 ]
Matsumoto, Kazuhiko [1 ]
Hwang, Jinkwang [1 ]
Nohira, Toshiyuki [2 ]
机构
[1] Kyoto Univ, Grad Sch Energy Sci, Sakyo Ku, Yoshida Honmachi, Kyoto 6068501, Japan
[2] Kyoto Univ, Inst Adv Energy, Uji, Kyoto 6110011, Japan
来源
CHEMICAL RECORD | 2019年 / 19卷 / 04期
基金
日本科学技术振兴机构;
关键词
Sodium ion battery; Ionic liquid; Intermediate-temperature operation; Electrode material; Electrolyte; CHARGE-DISCHARGE BEHAVIOR; ENERGY-STORAGE SYSTEMS; NEGATIVE ELECTRODE; POSITIVE ELECTRODE; SODIATION-DESODIATION; MARICITE NAFEPO4; NAFSA-KFSA; VISCOSITY; PERFORMANCE; NA2FEP2O7;
D O I
10.1002/tcr.201800119
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sodium ion batteries have been developed using ionic liquids as electrolytes. Sodium is superior to lithium as a raw material for mass production of large-scale batteries for energy storage due to its abundance and even distribution across the earth. Ionic liquids are non-volatile and non-flammable, which improved the safety of the batteries remarkably. In addition, operation temperatures were extended to higher values, improving the performance of the batteries by facilitating the reaction at the electrode and mass transfer. Binary systems of sodium and quaternary ammonium salts, such as 1-ethyl-3-methylimidazolium and N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)amide, were employed as electrolytes for sodium ion batteries. A series of positive and negative electrode materials were examined to be combined with these ionic liquid electrolytes. A 27Ah full cell was fabricated employing sodium chromite (NaCrO2) and hard carbon as positive and negative electrode materials, respectively. The gravimetric energy density obtained for the battery was 75Whkg(-1) and its volumetric energy density was 125WhL(-1). The capacity retention after 500cycles was 87%. Further improvement of the cell performance and energy density is expected on development of suitable electrode materials and optimization of the cell design.
引用
收藏
页码:758 / 770
页数:13
相关论文
共 50 条
  • [1] Ionic liquids as potential electrolytes for sodium-ion batteries: an overview
    Domingues, Leandro S.
    de Melo, Hercilio G.
    Martins, Vitor L.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (18) : 12650 - 12667
  • [2] Ionic liquids as electrolytes for Li ion batteries
    Lee, JS
    Bae, JY
    Lee, H
    Quan, ND
    Kim, HS
    Kim, H
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2004, 10 (07) : 1086 - 1089
  • [3] Fluoroalkoxyaluminate-based ionic liquids as electrolytes for sodium-ion batteries
    Fiates, Juliane
    Ratochinski, Rafael H.
    Lourenco, Tuanan C.
    Da Silva, Juarez L. F.
    Dias, Luis G.
    JOURNAL OF MOLECULAR LIQUIDS, 2023, 369
  • [4] Tailoring the Properties of Gel Polymer Electrolytes for Sodium-Ion Batteries Using Ionic Liquids: A Review
    Gabryelczyk, Agnieszka
    Swiderska-Mocek, Agnieszka
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (27)
  • [5] Ionic liquids: Potential electrolytes for lithium ion batteries
    Srour, H.
    Giroud, N.
    Rouault, H.
    Santini, C. C.
    RECHARGEABLE LITHIUM AND LITHIUM ION BATTERIES, 2012, 41 (41): : 23 - 28
  • [6] Protic ionic liquids as electrolytes for lithium-ion batteries
    Menne, S.
    Pires, J.
    Anouti, M.
    Balducci, A.
    ELECTROCHEMISTRY COMMUNICATIONS, 2013, 31 : 39 - 41
  • [7] Functionalized ionic liquids as electrolytes for lithium-ion batteries
    Pandian, Shanthi
    Raju, S. G.
    Hariharan, Krishnan S.
    Kolake, Subramanya M.
    Park, Da-Hye
    Lee, Myung-Jin
    JOURNAL OF POWER SOURCES, 2015, 286 : 204 - 209
  • [8] Mixtures of Ionic Liquids as Possible Electrolytes for Lithium Ion Batteries
    Taige, Maria A.
    Hilbert, Diana
    Schubert, Thomas J. S.
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2012, 226 (02): : 129 - 139
  • [9] Functional Binders Based on Polymeric Ionic Liquids for Sodium Oxygen Batteries Using Ionic Liquid Electrolytes
    Ha, The An
    Li, Han
    Wang, Xiaoen
    O'Dell, Luke A.
    Forsyth, Maria
    Pozo-Gonzalo, Cristina
    Howlett, Patrick C.
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (01): : 434 - 444
  • [10] Understanding Polymerized Ionic Liquids as Solid Polymer Electrolytes for Sodium Batteries
    Makhlooghiazad, Faezeh
    Miguel Guerrero Mejia, Luis
    Rollo-Walker, Greg
    Kourati, Dani
    Galceran, Montserrat
    Chen, Fangfang
    Deschamps, Michael
    Howlett, Patrick
    O'Dell, Luke A.
    Forsyth, Maria
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (03) : 1992 - 2004