Anderson transition on the Bethe lattice: an approach with real energies

被引:39
|
作者
Parisi, Giorgio [1 ,2 ,3 ]
Pascazio, Saverio [4 ,5 ,6 ,7 ]
Pietracaprina, Francesca [1 ,8 ]
Ros, Valentina [9 ]
Scardicchio, Antonello [10 ,11 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Fis, Piazzale Aldo Moro 2, I-00185 Rome, Italy
[2] CNR, INFM, Ctr Stat Mech & Complex SMC, I-00185 Rome, Italy
[3] INFN, Sez Roma, I-00185 Rome, Italy
[4] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy
[5] Univ Bari, MECENAS, I-70126 Bari, Italy
[6] INFN, Sez Bari, I-70126 Bari, Italy
[7] CNR, INO, Ist Nazl Ottica, I-50125 Florence, Italy
[8] Univ Toulouse, CNRS, UPS, Lab Phys Theor,IRSAMC, Toulouse, France
[9] Univ Paris Diderot, Sorbonne Univ, Univ PSL,ENS,CNRS, Lab Phys,Ecole Normale Super,Sorbonne Paris Cite, Paris, France
[10] Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
[11] INFN, Sez Trieste, Via Valerio 2, I-34127 Trieste, Italy
基金
欧洲研究理事会;
关键词
Anderson model; Bethe lattice; localization transition; MANY-BODY LOCALIZATION; MODEL; SYSTEMS; PHASE;
D O I
10.1088/1751-8121/ab56e8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the Anderson model on the Bethe lattice by working directly with propagators at real energies E. We introduce a novel criterion for the localization-delocalization transition based on the stability of the population of the propagators, and show that it is consistent with the one obtained through the study of the imaginary part of the self-energy. We present an accurate numerical estimate of the transition point, as well as a concise proof of the asymptotic formula for the critical disorder on lattices of large connectivity, as given in Anderson (1958 Phys. Rev. 109 1492-505). We discuss how the forward approximation used in analytic treatments of localization problems fits into this scenario and how one can interpolate between it and the correct asymptotic analysis.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Quantum k-core conduction on the Bethe lattice
    Cao, L.
    Schwarz, J. M.
    PHYSICAL REVIEW B, 2010, 82 (10)
  • [22] Bethe lattice approach and relaxation dynamics study of spin-crossover materials
    Oke, Toussaint Djidjoho
    Hontinfinde, Felix
    Boukheddaden, Kamel
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2015, 120 (01): : 309 - 320
  • [23] Bethe lattice approach and relaxation dynamics study of spin-crossover materials
    Toussaint Djidjoho Oke
    Félix Hontinfinde
    Kamel Boukheddaden
    Applied Physics A, 2015, 120 : 309 - 320
  • [24] The Ising Model on the Bethe Lattice with Two Atoms Per Site
    Albayrak, Erhan
    SPIN, 2024, 14 (04)
  • [25] Ergodic and localized regions in quantum spin glasses on the Bethe lattice
    Mossi, G.
    Scardicchio, A.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 375 (2108):
  • [26] Quantum Coulomb glass on the Bethe lattice
    Lovas, Izabella
    Kiss, Annamaria
    Moca, Catalin Pascu
    Zarand, Gergely
    PHYSICAL REVIEW RESEARCH, 2022, 4 (02):
  • [27] Critical percolation on a Bethe lattice revisited
    Braga, GA
    Sanchis, R
    Schieber, TA
    SIAM REVIEW, 2005, 47 (02) : 349 - 365
  • [28] Hysteretic behavior in an Ising model with crystal-field potential: A Bethe lattice approach
    Ekiz, C
    PHYSICS LETTERS A, 2006, 349 (1-4) : 21 - 26
  • [29] The replica symmetric solution for orthogonally constrained Heisenberg model on Bethe lattice
    Concetti, Francesco
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (06)
  • [30] Core-shell structured triangular Ising nanowire on the Bethe lattice
    Albayrak, Erhan
    PHYSICS LETTERS A, 2016, 380 (03) : 458 - 464