Well-quasi-ordering of matrices under Schur complement and applications to directed graphs

被引:3
作者
Kante, Mamadou Moustapha [1 ]
机构
[1] Univ Clermont Ferrand, Clermont Univ, LIMOS, CNRS, F-63173 Aubiere, France
关键词
RANK-WIDTH; BRANCH-WIDTH; CLIQUE-WIDTH; MINORS; MATROIDS;
D O I
10.1016/j.ejc.2012.03.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [S. Oum, Rank-width and well-quasi-ordering of skew-symmetric or symmetric matrices, Linear Algebra and its Applications 436 (7) (2012) 2008-2036] Oum proved that, for a fixed finite field F, any infinite sequence M-1, M-2, . . . of (skew) symmetric matrices over F of bounded F-rank-width has a pair i < j, such that M-i is isomorphic to a principal submatrix of a principal pivot transform of M-j. We generalise this result to sigma-symmetric matrices introduced by Rao and the author. (Skew) symmetric matrices are special cases of sigma-symmetric matrices. As a by-product, we obtain that for every infinite sequence G(1), G(2), . . . of directed graphs of bounded rank-width there exists a pair i < j such that G(i) is a pivot-minor of G(j). Another consequence is that non-singular principal submatrices of a sigma-symmetric matrix form a delta-matroid. We extend in this way the notion of representability of delta-matroids by Bouchet. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1820 / 1841
页数:22
相关论文
共 26 条
[1]   GREEDY ALGORITHM AND SYMMETRICAL MATROIDS [J].
BOUCHET, A .
MATHEMATICAL PROGRAMMING, 1987, 38 (02) :147-159
[2]  
BOUCHET A, 1988, COLLOQ MATH SOC J B, V52, P167
[3]   ISOTROPIC SYSTEMS [J].
BOUCHET, A .
EUROPEAN JOURNAL OF COMBINATORICS, 1987, 8 (03) :231-244
[4]   Maximal pivots on graphs with an application to gene assembly [J].
Brijder, Robert ;
Hoogeboom, Hendrik Jan .
DISCRETE APPLIED MATHEMATICS, 2010, 158 (18) :1977-1985
[5]   Polynomial time recognition of Clique-width ≤3 graphs -: Extended abstract [J].
Corneil, DG ;
Habib, M ;
Lanlignel, JM ;
Reed, B ;
Rotics, U .
LATIN 2000: THEORETICAL INFORMATICS, 2000, 1776 :126-134
[6]   HANDLE-REWRITING HYPERGRAPH GRAMMARS [J].
COURCELLE, B ;
ENGELFRIET, J ;
ROZENBERG, G .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1993, 46 (02) :218-270
[7]  
Courcelle B, 2012, ENCYCLOP MATH APPL, V138, P1, DOI 10.1017/CBO9780511977619
[8]   Graph operations characterizing rank-width [J].
Courcelle, Bruno ;
Kante, Mamadou Moustapha .
DISCRETE APPLIED MATHEMATICS, 2009, 157 (04) :627-640
[9]  
Diestel R., 2005, GRAPH THEORY, VThird
[10]  
Geelen J.F., COMBINATORICS COMPLE